Learning to Classify DWDM Optical Channels from Tiny and Imbalanced Data
Applying machine learning algorithms for assessing the transmission quality in optical networks is associated with substantial challenges. Datasets that could provide training instances tend to be small and heavily imbalanced. This requires applying imbalanced compensation techniques when using bina...
Guardado en:
Autores principales: | Paweł Cichosz, Stanisław Kozdrowski, Sławomir Sujecki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ed8b64142234126b3d69029095a2866 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum capacity analysis of multi-level amplitude damping channels
por: Stefano Chessa, et al.
Publicado: (2021) -
Topological flocking models in spatially heterogeneous environments
por: Parisa Rahmani, et al.
Publicado: (2021) -
Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures
por: Alejandro R.-P. Montblanch, et al.
Publicado: (2021) -
Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid
por: Anna Niggas, et al.
Publicado: (2021) -
Quantum spin mixing in Dirac materials
por: Ying-Jiun Chen, et al.
Publicado: (2021)