Circadian preference modulates the neural substrate of conflict processing across the day.
Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7edaeed058e649e48ab9f0260d30231c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7edaeed058e649e48ab9f0260d30231c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7edaeed058e649e48ab9f0260d30231c2021-11-18T07:30:57ZCircadian preference modulates the neural substrate of conflict processing across the day.1932-620310.1371/journal.pone.0029658https://doaj.org/article/7edaeed058e649e48ab9f0260d30231c2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22238632/?tool=EBIhttps://doaj.org/toc/1932-6203Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions.Christina SchmidtPhilippe PeigneuxYves LeclercqVirginie SterpenichGilles VandewalleChristophe PhillipsPierre BerthomierChristian BerthomierGilberte TinguelySteffen GaisManuel SchabusMartin DesseillesThanh Dang-VuEric SalmonChristian DegueldreEvelyne BalteauAndré LuxenChristian CajochenPierre MaquetFabienne CollettePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 1, p e29658 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Christina Schmidt Philippe Peigneux Yves Leclercq Virginie Sterpenich Gilles Vandewalle Christophe Phillips Pierre Berthomier Christian Berthomier Gilberte Tinguely Steffen Gais Manuel Schabus Martin Desseilles Thanh Dang-Vu Eric Salmon Christian Degueldre Evelyne Balteau André Luxen Christian Cajochen Pierre Maquet Fabienne Collette Circadian preference modulates the neural substrate of conflict processing across the day. |
description |
Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions. |
format |
article |
author |
Christina Schmidt Philippe Peigneux Yves Leclercq Virginie Sterpenich Gilles Vandewalle Christophe Phillips Pierre Berthomier Christian Berthomier Gilberte Tinguely Steffen Gais Manuel Schabus Martin Desseilles Thanh Dang-Vu Eric Salmon Christian Degueldre Evelyne Balteau André Luxen Christian Cajochen Pierre Maquet Fabienne Collette |
author_facet |
Christina Schmidt Philippe Peigneux Yves Leclercq Virginie Sterpenich Gilles Vandewalle Christophe Phillips Pierre Berthomier Christian Berthomier Gilberte Tinguely Steffen Gais Manuel Schabus Martin Desseilles Thanh Dang-Vu Eric Salmon Christian Degueldre Evelyne Balteau André Luxen Christian Cajochen Pierre Maquet Fabienne Collette |
author_sort |
Christina Schmidt |
title |
Circadian preference modulates the neural substrate of conflict processing across the day. |
title_short |
Circadian preference modulates the neural substrate of conflict processing across the day. |
title_full |
Circadian preference modulates the neural substrate of conflict processing across the day. |
title_fullStr |
Circadian preference modulates the neural substrate of conflict processing across the day. |
title_full_unstemmed |
Circadian preference modulates the neural substrate of conflict processing across the day. |
title_sort |
circadian preference modulates the neural substrate of conflict processing across the day. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/7edaeed058e649e48ab9f0260d30231c |
work_keys_str_mv |
AT christinaschmidt circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT philippepeigneux circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT yvesleclercq circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT virginiesterpenich circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT gillesvandewalle circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT christophephillips circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT pierreberthomier circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT christianberthomier circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT gilbertetinguely circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT steffengais circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT manuelschabus circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT martindesseilles circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT thanhdangvu circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT ericsalmon circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT christiandegueldre circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT evelynebalteau circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT andreluxen circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT christiancajochen circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT pierremaquet circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday AT fabiennecollette circadianpreferencemodulatestheneuralsubstrateofconflictprocessingacrosstheday |
_version_ |
1718423353417531392 |