PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition
Assays to characterize the epigenome and interrogate chromatin state genome wide have so far been performed in a selected set of conditions. Here, Durham et al. develop a computational method based on tensor decomposition to impute missing experiments in collections of epigenomics experiments.
Enregistré dans:
Auteurs principaux: | Timothy J. Durham, Maxwell W. Libbrecht, J. Jeffry Howbert, Jeff Bilmes, William Stafford Noble |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7efe8cda7bfd4c9eb9281adc0e0e8c68 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
par: Xiutao Pan, et autres
Publié: (2021) -
Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium
par: Cédric Lorcé, et autres
Publié: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
par: Fei Ma, et autres
Publié: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
par: Wei Vivian Li, et autres
Publié: (2018) -
An imputation approach for oligonucleotide microarrays.
par: Ming Li, et autres
Publié: (2013)