On Bilinear Narrow Operators

In this article, we introduce a new class of operators on the Cartesian product of vector lattices. We say that a bilinear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marat Pliev, Nonna Dzhusoeva, Ruslan Kulaev
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/7efe9e99b3bb4ca9872c2d99128f22db
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7efe9e99b3bb4ca9872c2d99128f22db
record_format dspace
spelling oai:doaj.org-article:7efe9e99b3bb4ca9872c2d99128f22db2021-11-25T18:16:56ZOn Bilinear Narrow Operators10.3390/math92228922227-7390https://doaj.org/article/7efe9e99b3bb4ca9872c2d99128f22db2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2892https://doaj.org/toc/2227-7390In this article, we introduce a new class of operators on the Cartesian product of vector lattices. We say that a bilinear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo lspace="0pt">:</mo><mi>E</mi><mo>×</mo><mi>F</mi><mo>→</mo><mi>W</mi></mrow></semantics></math></inline-formula> defined on the Cartesian product of vector lattices <i>E</i> and <i>F</i> and taking values in a vector lattice <i>W</i> is narrow if the partial operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>x</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>y</mi></msub></semantics></math></inline-formula> are narrow for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>E</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>F</mi></mrow></semantics></math></inline-formula>. We prove that, for order-continuous Köthe–Banach spaces <i>E</i> and <i>F</i> and a Banach space <i>X</i>, the classes of narrow and weakly function narrow bilinear operators from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> to <i>X</i> are coincident. Then, we prove that every order-to-norm continuous <i>C</i>-compact bilinear regular operator <i>T</i> is narrow. Finally, we show that a regular bilinear operator <i>T</i> from the Cartesian product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> of vector lattices <i>E</i> and <i>F</i> with the principal projection property to an order continuous Banach lattice <i>G</i> is narrow if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></semantics></math></inline-formula> is.Marat PlievNonna DzhusoevaRuslan KulaevMDPI AGarticlebilinear operatornarrow operatororder-to-norm continuous operator<i>C</i>-compact operatorregular operatorKöthe–Banach spaceMathematicsQA1-939ENMathematics, Vol 9, Iss 2892, p 2892 (2021)
institution DOAJ
collection DOAJ
language EN
topic bilinear operator
narrow operator
order-to-norm continuous operator
<i>C</i>-compact operator
regular operator
Köthe–Banach space
Mathematics
QA1-939
spellingShingle bilinear operator
narrow operator
order-to-norm continuous operator
<i>C</i>-compact operator
regular operator
Köthe–Banach space
Mathematics
QA1-939
Marat Pliev
Nonna Dzhusoeva
Ruslan Kulaev
On Bilinear Narrow Operators
description In this article, we introduce a new class of operators on the Cartesian product of vector lattices. We say that a bilinear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo lspace="0pt">:</mo><mi>E</mi><mo>×</mo><mi>F</mi><mo>→</mo><mi>W</mi></mrow></semantics></math></inline-formula> defined on the Cartesian product of vector lattices <i>E</i> and <i>F</i> and taking values in a vector lattice <i>W</i> is narrow if the partial operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>x</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>y</mi></msub></semantics></math></inline-formula> are narrow for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>E</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>F</mi></mrow></semantics></math></inline-formula>. We prove that, for order-continuous Köthe–Banach spaces <i>E</i> and <i>F</i> and a Banach space <i>X</i>, the classes of narrow and weakly function narrow bilinear operators from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> to <i>X</i> are coincident. Then, we prove that every order-to-norm continuous <i>C</i>-compact bilinear regular operator <i>T</i> is narrow. Finally, we show that a regular bilinear operator <i>T</i> from the Cartesian product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> of vector lattices <i>E</i> and <i>F</i> with the principal projection property to an order continuous Banach lattice <i>G</i> is narrow if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></semantics></math></inline-formula> is.
format article
author Marat Pliev
Nonna Dzhusoeva
Ruslan Kulaev
author_facet Marat Pliev
Nonna Dzhusoeva
Ruslan Kulaev
author_sort Marat Pliev
title On Bilinear Narrow Operators
title_short On Bilinear Narrow Operators
title_full On Bilinear Narrow Operators
title_fullStr On Bilinear Narrow Operators
title_full_unstemmed On Bilinear Narrow Operators
title_sort on bilinear narrow operators
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/7efe9e99b3bb4ca9872c2d99128f22db
work_keys_str_mv AT maratpliev onbilinearnarrowoperators
AT nonnadzhusoeva onbilinearnarrowoperators
AT ruslankulaev onbilinearnarrowoperators
_version_ 1718411390980456448