Influencing Factors Evaluation of Machine Learning-Based Energy Consumption Prediction
Modern computing resources, including machine learning-based techniques, are used to maintain stability between the demand and supply of electricity. Machine learning is widely used for the prediction of energy consumption. The researchers present several artificial intelligence and machine learning...
Guardado en:
Autores principales: | Prince Waqas Khan, Yongjun Kim, Yung-Cheol Byun, Sang-Joon Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f03c1eb0d12479085f027c6a73f6115 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Techniques in the Energy Consumption of Buildings: A Systematic Literature Review Using Text Mining and Bibliometric Analysis
por: Ahmed Abdelaziz, et al.
Publicado: (2021) -
State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives
por: Xing Shu, et al.
Publicado: (2021) -
Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced Concrete Shear Walls
por: Yicheng Yang, et al.
Publicado: (2021) -
Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study
por: Fadi Kahwash, et al.
Publicado: (2021) -
Estimating District-Level Electricity Consumption Using Remotely Sensed Data in Eastern Economic Corridor, Thailand
por: Sirikul Hutasavi, et al.
Publicado: (2021)