Accurate prediction of birth implementing a statistical model through the determination of steroid hormones in saliva

Abstract Steroidal hormone interaction in pregnancy is crucial for adequate fetal evolution and preparation for childbirth and extrauterine life. Estrone sulphate, estriol, progesterone and cortisol play important roles in the initiation of labour mechanism at the start of contractions and cervical...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Silvia Alonso, Sara Cáceres, Daniel Vélez, Luis Sanz, Gema Silvan, Maria Jose Illera, Juan Carlos Illera
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/7f0a5d086ef2498993702d61ae88f09d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Steroidal hormone interaction in pregnancy is crucial for adequate fetal evolution and preparation for childbirth and extrauterine life. Estrone sulphate, estriol, progesterone and cortisol play important roles in the initiation of labour mechanism at the start of contractions and cervical effacement. However, their interaction remains uncertain. Although several studies regarding the hormonal mechanism of labour have been reported, the prediction of date of birth remains a challenge. In this study, we present for the first time machine learning algorithms for the prediction of whether spontaneous labour will occur from week 37 onwards. Estrone sulphate, estriol, progesterone and cortisol were analysed in saliva samples collected from 106 pregnant women since week 34 by enzyme-immunoassay (EIA) techniques. We compared a random forest model with a traditional logistic regression over a dataset constructed with the values observed of these measures. We observed that the results, evaluated in terms of accuracy and area under the curve (AUC) metrics, are sensibly better in the random forest model. For this reason, we consider that machine learning methods contribute in an important way to the obstetric practice.