A novel laser-Doppler flowmetry assisted murine model of acute hindlimb ischemia-reperfusion for free flap research.

Suitable and reproducible experimental models of translational research in reconstructive surgery that allow in-vivo investigation of diverse molecular and cellular mechanisms are still limited. To this end we created a novel murine model of acute hindlimb ischemia-reperfusion to mimic a microsurgic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tolga Taha Sönmez, Othman Al-Sawaf, Gerald Brandacher, Isabella Kanzler, Nancy Tuchscheerer, Mersedeh Tohidnezhad, Anastasios Kanatas, Matthias Knobe, Athanassios Fragoulis, René Tolba, David Mitchell, Thomas Pufe, Christoph Jan Wruck, Frank Hölzle, Elisa Anamaria Liehn
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7f0c4fcf399740389774704aec555183
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Suitable and reproducible experimental models of translational research in reconstructive surgery that allow in-vivo investigation of diverse molecular and cellular mechanisms are still limited. To this end we created a novel murine model of acute hindlimb ischemia-reperfusion to mimic a microsurgical free flap procedure. Thirty-six C57BL6 mice (n = 6/group) were assigned to one control and five experimental groups (subject to 6, 12, 96, 120 hours and 14 days of reperfusion, respectively) following 4 hours of complete hindlimb ischemia. Ischemia and reperfusion were monitored using Laser-Doppler Flowmetry. Hindlimb tissue components (skin and muscle) were investigated using histopathology, quantitative immunohistochemistry and immunofluorescence. Despite massive initial tissue damage induced by ischemia-reperfusion injury, the structure of the skin component was restored after 96 hours. During the same time, muscle cells were replaced by young myotubes. In addition, initial neuromuscular dysfunction, edema and swelling resolved by day 4. After two weeks, no functional or neuromuscular deficits were detectable. Furthermore, upregulation of VEGF and tissue infiltration with CD34-positive stem cells led to new capillary formation, which peaked with significantly higher values after two weeks. These data indicate that our model is suitable to investigate cellular and molecular tissue alterations from ischemia-reperfusion such as occur during free flap procedures.