Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy
Abstract Ferroelectric materials have been a key research topic owing to their wide variety of modern electronic and photonic applications. For the quick exploration of higher operating speed, smaller size, and superior efficiencies of novel ferroelectric devices, the ultrafast dynamics of ferroelec...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f22037950764b649e7102157e7710bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7f22037950764b649e7102157e7710bb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7f22037950764b649e7102157e7710bb2021-11-17T08:40:31ZProbing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy2198-384410.1002/advs.202102488https://doaj.org/article/7f22037950764b649e7102157e7710bb2021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202102488https://doaj.org/toc/2198-3844Abstract Ferroelectric materials have been a key research topic owing to their wide variety of modern electronic and photonic applications. For the quick exploration of higher operating speed, smaller size, and superior efficiencies of novel ferroelectric devices, the ultrafast dynamics of ferroelectrics that directly reflect their respond time and lifetimes have drawn considerable attention. Driven by time‐resolved pump‐probe spectroscopy that allows for probing, controlling, and modulating dynamic processes of ferroelectrics in real‐time, much research efforts have been made to understand and exploit the ultrafast dynamics of ferroelectric. Herein, the current state of ultrafast dynamic features of ferroelectrics tracked by time‐resolved pump‐probe spectroscopy is reviewed, which includes ferroelectrics order parameters of polarization, lattice, spin, electronic excitation, and their coupling. Several potential perspectives and possible further applications combining ultrafast pump‐probe spectroscopy and ferroelectrics are also presented. This review offers a clear guidance of ultrafast dynamics of ferroelectric orders, which may promote the rapid development of next‐generation devices.Yuan ZhangJunfeng DaiXiangli ZhongDongwen ZhangGaokuo ZhongJiangyu LiWileyarticleferroeletricstime‐resolved pump‐probe spectroscopyultrafast dynamicsScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ferroeletrics time‐resolved pump‐probe spectroscopy ultrafast dynamics Science Q |
spellingShingle |
ferroeletrics time‐resolved pump‐probe spectroscopy ultrafast dynamics Science Q Yuan Zhang Junfeng Dai Xiangli Zhong Dongwen Zhang Gaokuo Zhong Jiangyu Li Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
description |
Abstract Ferroelectric materials have been a key research topic owing to their wide variety of modern electronic and photonic applications. For the quick exploration of higher operating speed, smaller size, and superior efficiencies of novel ferroelectric devices, the ultrafast dynamics of ferroelectrics that directly reflect their respond time and lifetimes have drawn considerable attention. Driven by time‐resolved pump‐probe spectroscopy that allows for probing, controlling, and modulating dynamic processes of ferroelectrics in real‐time, much research efforts have been made to understand and exploit the ultrafast dynamics of ferroelectric. Herein, the current state of ultrafast dynamic features of ferroelectrics tracked by time‐resolved pump‐probe spectroscopy is reviewed, which includes ferroelectrics order parameters of polarization, lattice, spin, electronic excitation, and their coupling. Several potential perspectives and possible further applications combining ultrafast pump‐probe spectroscopy and ferroelectrics are also presented. This review offers a clear guidance of ultrafast dynamics of ferroelectric orders, which may promote the rapid development of next‐generation devices. |
format |
article |
author |
Yuan Zhang Junfeng Dai Xiangli Zhong Dongwen Zhang Gaokuo Zhong Jiangyu Li |
author_facet |
Yuan Zhang Junfeng Dai Xiangli Zhong Dongwen Zhang Gaokuo Zhong Jiangyu Li |
author_sort |
Yuan Zhang |
title |
Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
title_short |
Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
title_full |
Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
title_fullStr |
Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
title_full_unstemmed |
Probing Ultrafast Dynamics of Ferroelectrics by Time‐Resolved Pump‐Probe Spectroscopy |
title_sort |
probing ultrafast dynamics of ferroelectrics by time‐resolved pump‐probe spectroscopy |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/7f22037950764b649e7102157e7710bb |
work_keys_str_mv |
AT yuanzhang probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy AT junfengdai probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy AT xianglizhong probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy AT dongwenzhang probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy AT gaokuozhong probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy AT jiangyuli probingultrafastdynamicsofferroelectricsbytimeresolvedpumpprobespectroscopy |
_version_ |
1718425681153490944 |