Contact manifolds, Lagrangian Grassmannians and PDEs
In this paper we review a geometric approach to PDEs. We mainly focus on scalar PDEs in n independent variables and one dependent variable of order one and two, by insisting on the underlying (2n + 1)-dimensional contact manifold and the so-called Lagrangian Grassmannian bundle over the latter. This...
Guardado en:
Autores principales: | Eshkobilov Olimjon, Manno Gianni, Moreno Giovanni, Sagerschnig Katja |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f242cfb7a274a588821b475eb6cb7c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
por: Calamai Simone, et al.
Publicado: (2017) -
Survey on real forms of the complex A2(2)-Toda equation and surface theory
por: Dorfmeister Josef F., et al.
Publicado: (2019) -
Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics
por: Bazzoni Giovanni, et al.
Publicado: (2017) -
Differential operators on almost-Hermitian manifolds and harmonic forms
por: Tardini Nicoletta, et al.
Publicado: (2020) -
Locally conformally Kähler solvmanifolds: a survey
por: Andrada A., et al.
Publicado: (2019)