Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes
We consider the predictor-corrector numerical methods for solving Caputo–Hadamard fractional differential equations with the graded meshes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f323a305db14369a814159008966cac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7f323a305db14369a814159008966cac |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
predictor-corrector method Caputo–Hadamard fractional derivative graded meshes error estimates Mathematics QA1-939 |
spellingShingle |
predictor-corrector method Caputo–Hadamard fractional derivative graded meshes error estimates Mathematics QA1-939 Charles Wing Ho Green Yanzhi Liu Yubin Yan Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
description |
We consider the predictor-corrector numerical methods for solving Caputo–Hadamard fractional differential equations with the graded meshes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><msub><mi>t</mi><mi>j</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>a</mi><mo>+</mo><mfenced separators="" open="(" close=")"><mo form="prefix">log</mo><mfrac><msub><mi>t</mi><mi>N</mi></msub><mi>a</mi></mfrac></mfenced><msup><mfenced open="(" close=")"><mfrac><mi>j</mi><mi>N</mi></mfrac></mfenced><mi>r</mi></msup><mo>,</mo><mspace width="0.166667em"></mspace><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mi>a</mi><mo>=</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>0</mn></msub><mo><</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><mo>⋯</mo><mo><</mo><mo form="prefix">log</mo><msub><mi>t</mi><mi>N</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>T</mi></mrow></semantics></math></inline-formula> is a partition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mo form="prefix">log</mo><mi>T</mi><mo>]</mo></mrow></semantics></math></inline-formula>. We also consider the rectangular and trapezoidal methods for solving Caputo–Hadamard fractional differential equations with the non-uniform meshes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><msub><mi>t</mi><mi>j</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>a</mi><mo>+</mo><mfenced separators="" open="(" close=")"><mo form="prefix">log</mo><mfrac><msub><mi>t</mi><mi>N</mi></msub><mi>a</mi></mfrac></mfenced><mfrac><mrow><mi>j</mi><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>N</mi><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Under the weak smoothness assumptions of the Caputo–Hadamard fractional derivative, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mmultiscripts><mi>D</mi><mrow><mi>C</mi><mi>H</mi></mrow><mrow></mrow></mmultiscripts><mrow><mi>a</mi><mo>,</mo><mi>t</mi></mrow><mi>α</mi></msubsup><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∉</mo><msup><mi>C</mi><mn>1</mn></msup><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>T</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the optimal convergence orders of the proposed numerical methods are obtained by choosing the suitable graded mesh ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The numerical examples are given to show that the numerical results are consistent with the theoretical findings. |
format |
article |
author |
Charles Wing Ho Green Yanzhi Liu Yubin Yan |
author_facet |
Charles Wing Ho Green Yanzhi Liu Yubin Yan |
author_sort |
Charles Wing Ho Green |
title |
Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
title_short |
Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
title_full |
Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
title_fullStr |
Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
title_full_unstemmed |
Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes |
title_sort |
numerical methods for caputo–hadamard fractional differential equations with graded and non-uniform meshes |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/7f323a305db14369a814159008966cac |
work_keys_str_mv |
AT charleswinghogreen numericalmethodsforcaputohadamardfractionaldifferentialequationswithgradedandnonuniformmeshes AT yanzhiliu numericalmethodsforcaputohadamardfractionaldifferentialequationswithgradedandnonuniformmeshes AT yubinyan numericalmethodsforcaputohadamardfractionaldifferentialequationswithgradedandnonuniformmeshes |
_version_ |
1718431894357409792 |
spelling |
oai:doaj.org-article:7f323a305db14369a814159008966cac2021-11-11T18:16:50ZNumerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes10.3390/math92127282227-7390https://doaj.org/article/7f323a305db14369a814159008966cac2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2728https://doaj.org/toc/2227-7390We consider the predictor-corrector numerical methods for solving Caputo–Hadamard fractional differential equations with the graded meshes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><msub><mi>t</mi><mi>j</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>a</mi><mo>+</mo><mfenced separators="" open="(" close=")"><mo form="prefix">log</mo><mfrac><msub><mi>t</mi><mi>N</mi></msub><mi>a</mi></mfrac></mfenced><msup><mfenced open="(" close=")"><mfrac><mi>j</mi><mi>N</mi></mfrac></mfenced><mi>r</mi></msup><mo>,</mo><mspace width="0.166667em"></mspace><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mi>a</mi><mo>=</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>0</mn></msub><mo><</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><mo>⋯</mo><mo><</mo><mo form="prefix">log</mo><msub><mi>t</mi><mi>N</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>T</mi></mrow></semantics></math></inline-formula> is a partition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo form="prefix">log</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mo form="prefix">log</mo><mi>T</mi><mo>]</mo></mrow></semantics></math></inline-formula>. We also consider the rectangular and trapezoidal methods for solving Caputo–Hadamard fractional differential equations with the non-uniform meshes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><msub><mi>t</mi><mi>j</mi></msub><mo>=</mo><mo form="prefix">log</mo><mi>a</mi><mo>+</mo><mfenced separators="" open="(" close=")"><mo form="prefix">log</mo><mfrac><msub><mi>t</mi><mi>N</mi></msub><mi>a</mi></mfrac></mfenced><mfrac><mrow><mi>j</mi><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>N</mi><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Under the weak smoothness assumptions of the Caputo–Hadamard fractional derivative, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mmultiscripts><mi>D</mi><mrow><mi>C</mi><mi>H</mi></mrow><mrow></mrow></mmultiscripts><mrow><mi>a</mi><mo>,</mo><mi>t</mi></mrow><mi>α</mi></msubsup><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∉</mo><msup><mi>C</mi><mn>1</mn></msup><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>T</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the optimal convergence orders of the proposed numerical methods are obtained by choosing the suitable graded mesh ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The numerical examples are given to show that the numerical results are consistent with the theoretical findings.Charles Wing Ho GreenYanzhi LiuYubin YanMDPI AGarticlepredictor-corrector methodCaputo–Hadamard fractional derivativegraded mesheserror estimatesMathematicsQA1-939ENMathematics, Vol 9, Iss 2728, p 2728 (2021) |