Support vector machine and deep-learning object detection for localisation of hard exudates
Abstract Hard exudates are one of the main clinical findings in the retinal images of patients with diabetic retinopathy. Detecting them early significantly impacts the treatment of underlying diseases; therefore, there is a need for automated systems with high reliability. We propose a novel method...
Guardado en:
Autores principales: | Veronika Kurilová, Jozef Goga, Miloš Oravec, Jarmila Pavlovičová, Slavomír Kajan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f38062e984643ea8b7d5b74483d7c12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of intravitreal bevacizumab on diabetic macular edema with hard exudates
por: Jeon S, et al.
Publicado: (2014) -
Multimodality analysis of Hyper-reflective Foci and Hard Exudates in Patients with Diabetic Retinopathy
por: Sijie Niu, et al.
Publicado: (2017) -
Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth
por: Putroue Keumala Intan
Publicado: (2019) -
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
por: YU,XINLIANG, et al.
Publicado: (2011) -
An automated mammogram classification system using modified support vector machine
por: Kayode AA, et al.
Publicado: (2019)