Analysis of the brain palmitoyl-proteome using both acyl-biotin exchange and acyl-resin-assisted capture methods

Abstract Palmitoylation is a reversible post-translational protein modification in which palmitic acid is added to cysteine residues, allowing association with different cellular membranes and subdomains. Recently, techniques have been developed to identify palmitoylation on a proteome-wide scale in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew J. Edmonds, Bethany Geary, Mary K. Doherty, Alan Morgan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7f3e84c68ff34038ae54030f230a9716
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Palmitoylation is a reversible post-translational protein modification in which palmitic acid is added to cysteine residues, allowing association with different cellular membranes and subdomains. Recently, techniques have been developed to identify palmitoylation on a proteome-wide scale in order to reveal the full cellular complement of palmitoylated proteins. However, in the studies reported to date, there is considerable variation between the sets of identified palmitoyl-proteins and so there remains some uncertainty over what constitutes the definitive complement of palmitoylated proteins even in well-studied tissues such as brain. To address this issue, we used both acyl-biotin exchange and acyl-resin-assisted capture approaches using rat brain as a common protein source. The palmitoyl-proteins identified from each method by mass spectrometry were then compared with each other and previously published studies. There was generally good agreement between the two methods, although many identifications were unique to one method, indicating that at least some of the variability in published palmitoyl proteomes is due to methodological differences. By combining our new data with previous publications using mammalian cells/tissues, we propose a high confidence set of bona fide palmitoylated proteins in brain and provide a resource to help researchers prioritise candidate palmitoyl-proteins for investigation.