Memory Model for Morphological Semantics of Visual Stimuli Using Sparse Distributed Representation
Recent achievements on CNN (convolutional neural networks) and DNN (deep neural networks) researches provide a lot of practical applications on computer vision area. However, these approaches require construction of huge size of training data for learning process. This paper tries to find a way for...
Guardado en:
Autores principales: | Kyuchang Kang, Changseok Bae |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f53c8f0b66345fdbda50c48f3ba2abe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
por: Vangelis P. Oikonomou, et al.
Publicado: (2020) -
ECG-Based Identification of Sudden Cardiac Death through Sparse Representations
por: Josue R. Velázquez-González, et al.
Publicado: (2021) -
Reduced-Reference Stereoscopic Image Quality Assessment Using Gradient Sparse Representation and Structural Degradation
por: Jian Ma, et al.
Publicado: (2021) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
por: Peng Xi, et al.
Publicado: (2021) -
Effect of Smoking-Related Visual and Auditory Stimuli on Attention Bias in Young People Who Smoke
por: Ceren OZERBIL, et al.
Publicado: (2020)