Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Guardado en:
Autores principales: | Shih-Cheng Huang, Tanay Kothari, Imon Banerjee, Chris Chute, Robyn L. Ball, Norah Borus, Andrew Huang, Bhavik N. Patel, Pranav Rajpurkar, Jeremy Irvin, Jared Dunnmon, Joseph Bledsoe, Katie Shpanskaya, Abhay Dhaliwal, Roham Zamanian, Andrew Y. Ng, Matthew P. Lungren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f587aa8fdaf4c4a8195a69df6031a63 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Sabri Eyuboglu, et al.
Publicado: (2021) -
Volumetric chemical imaging by stimulated Raman projection microscopy and tomography
por: Xueli Chen, et al.
Publicado: (2017) -
Compressive Volumetric Light-Field Excitation
por: David C. Schedl, et al.
Publicado: (2017)