Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7f5b3e84a5fb4cd59b6a382de9b6469e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7f5b3e84a5fb4cd59b6a382de9b6469e2021-12-05T14:10:53ZImpulsive Caputo-Fabrizio fractional differential equations in b-metric spaces2391-545510.1515/math-2021-0040https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0040https://doaj.org/toc/2391-5455We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section.Lazreg Jamal EddineAbbas SaïdBenchohra MouffakKarapınar ErdalDe Gruyterarticlefractional differential equationcaputo-fabrizio integral of fractional ordercaputo-fabrizio fractional derivativeinstantaneous impulseb-metric spaceα-ϕ-geraghty contractionfixed point47h1054h25MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 363-372 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fractional differential equation caputo-fabrizio integral of fractional order caputo-fabrizio fractional derivative instantaneous impulse b-metric space α-ϕ-geraghty contraction fixed point 47h10 54h25 Mathematics QA1-939 |
spellingShingle |
fractional differential equation caputo-fabrizio integral of fractional order caputo-fabrizio fractional derivative instantaneous impulse b-metric space α-ϕ-geraghty contraction fixed point 47h10 54h25 Mathematics QA1-939 Lazreg Jamal Eddine Abbas Saïd Benchohra Mouffak Karapınar Erdal Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
description |
We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section. |
format |
article |
author |
Lazreg Jamal Eddine Abbas Saïd Benchohra Mouffak Karapınar Erdal |
author_facet |
Lazreg Jamal Eddine Abbas Saïd Benchohra Mouffak Karapınar Erdal |
author_sort |
Lazreg Jamal Eddine |
title |
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
title_short |
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
title_full |
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
title_fullStr |
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
title_full_unstemmed |
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces |
title_sort |
impulsive caputo-fabrizio fractional differential equations in b-metric spaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e |
work_keys_str_mv |
AT lazregjamaleddine impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces AT abbassaid impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces AT benchohramouffak impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces AT karapınarerdal impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces |
_version_ |
1718371613737484288 |