Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces

We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section.

Guardado en:
Detalles Bibliográficos
Autores principales: Lazreg Jamal Eddine, Abbas Saïd, Benchohra Mouffak, Karapınar Erdal
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7f5b3e84a5fb4cd59b6a382de9b6469e
record_format dspace
spelling oai:doaj.org-article:7f5b3e84a5fb4cd59b6a382de9b6469e2021-12-05T14:10:53ZImpulsive Caputo-Fabrizio fractional differential equations in b-metric spaces2391-545510.1515/math-2021-0040https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0040https://doaj.org/toc/2391-5455We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section.Lazreg Jamal EddineAbbas SaïdBenchohra MouffakKarapınar ErdalDe Gruyterarticlefractional differential equationcaputo-fabrizio integral of fractional ordercaputo-fabrizio fractional derivativeinstantaneous impulseb-metric spaceα-ϕ-geraghty contractionfixed point47h1054h25MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 363-372 (2021)
institution DOAJ
collection DOAJ
language EN
topic fractional differential equation
caputo-fabrizio integral of fractional order
caputo-fabrizio fractional derivative
instantaneous impulse
b-metric space
α-ϕ-geraghty contraction
fixed point
47h10
54h25
Mathematics
QA1-939
spellingShingle fractional differential equation
caputo-fabrizio integral of fractional order
caputo-fabrizio fractional derivative
instantaneous impulse
b-metric space
α-ϕ-geraghty contraction
fixed point
47h10
54h25
Mathematics
QA1-939
Lazreg Jamal Eddine
Abbas Saïd
Benchohra Mouffak
Karapınar Erdal
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
description We deal with some impulsive Caputo-Fabrizio fractional differential equations in bb-metric spaces. We make use of α-ϕ\alpha \text{-}\phi -Geraghty-type contraction. An illustrative example is the subject of the last section.
format article
author Lazreg Jamal Eddine
Abbas Saïd
Benchohra Mouffak
Karapınar Erdal
author_facet Lazreg Jamal Eddine
Abbas Saïd
Benchohra Mouffak
Karapınar Erdal
author_sort Lazreg Jamal Eddine
title Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
title_short Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
title_full Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
title_fullStr Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
title_full_unstemmed Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
title_sort impulsive caputo-fabrizio fractional differential equations in b-metric spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/7f5b3e84a5fb4cd59b6a382de9b6469e
work_keys_str_mv AT lazregjamaleddine impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces
AT abbassaid impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces
AT benchohramouffak impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces
AT karapınarerdal impulsivecaputofabriziofractionaldifferentialequationsinbmetricspaces
_version_ 1718371613737484288