Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data

Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to at...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher T. Nelson, Rama K. Vasudevan, Xiaohang Zhang, Maxim Ziatdinov, Eugene A. Eliseev, Ichiro Takeuchi, Anna N. Morozovska, Sergei V. Kalinin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7f7cee60a5a54273b04953277d9b026c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to atomically resolved images of walls. This analysis can also predict the level of microscope performance needed to detect specific physical phenomena.