Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data

Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to at...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Christopher T. Nelson, Rama K. Vasudevan, Xiaohang Zhang, Maxim Ziatdinov, Eugene A. Eliseev, Ichiro Takeuchi, Anna N. Morozovska, Sergei V. Kalinin
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/7f7cee60a5a54273b04953277d9b026c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to atomically resolved images of walls. This analysis can also predict the level of microscope performance needed to detect specific physical phenomena.