Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data
Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to at...
Enregistré dans:
Auteurs principaux: | Christopher T. Nelson, Rama K. Vasudevan, Xiaohang Zhang, Maxim Ziatdinov, Eugene A. Eliseev, Ichiro Takeuchi, Anna N. Morozovska, Sergei V. Kalinin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7f7cee60a5a54273b04953277d9b026c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
par: Christopher T. Nelson, et autres
Publié: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
par: Rama K. Vasudevan, et autres
Publié: (2021) -
Field enhancement of electronic conductance at ferroelectric domain walls
par: Rama K. Vasudevan, et autres
Publié: (2017) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
par: Lukas Vlcek, et autres
Publié: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
par: Ayana Ghosh, et autres
Publié: (2021)