Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data
Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to at...
Guardado en:
Autores principales: | Christopher T. Nelson, Rama K. Vasudevan, Xiaohang Zhang, Maxim Ziatdinov, Eugene A. Eliseev, Ichiro Takeuchi, Anna N. Morozovska, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f7cee60a5a54273b04953277d9b026c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
por: Christopher T. Nelson, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Field enhancement of electronic conductance at ferroelectric domain walls
por: Rama K. Vasudevan, et al.
Publicado: (2017) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021)