Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data

Ferroelectric domain wall profiles can be modeled by phenomenological Ginzburg-Landau theory, with different candidate models and parameters. Here, the authors solve the problem of model selection by developing a Bayesian inference framework allowing for uncertainty quantification and apply it to at...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Christopher T. Nelson, Rama K. Vasudevan, Xiaohang Zhang, Maxim Ziatdinov, Eugene A. Eliseev, Ichiro Takeuchi, Anna N. Morozovska, Sergei V. Kalinin
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/7f7cee60a5a54273b04953277d9b026c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!