A graph neural network framework for causal inference in brain networks
Abstract A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static structural backbone. Due to the complexity of spatial and temporal dependencies between different brain areas, fully comprehending the interplay between structure an...
Guardado en:
Autores principales: | S. Wein, W. M. Malloni, A. M. Tomé, S. M. Frank, G. -I. Henze, S. Wüst, M. W. Greenlee, E. W. Lang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f7d58a025724049af9256f180cb585e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inferring Users’ Social Roles with a Multi-Level Graph Neural Network Model
por: Chunrui Zhang, et al.
Publicado: (2021) -
FUZZY GRAPHS IN FUZZY NEURAL NETWORKS
por: Sameena,K, et al.
Publicado: (2009) -
A weighted patient network-based framework for predicting chronic diseases using graph neural networks
por: Haohui Lu, et al.
Publicado: (2021) -
An Overview on the Application of Graph Neural Networks in Wireless Networks
por: Shiwen He, et al.
Publicado: (2021) -
CN-Motifs Perceptive Graph Neural Networks
por: Fan Zhang, et al.
Publicado: (2021)