Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets

Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronavirus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kuoyuan Cheng, Laura Martin‐Sancho, Lipika R Pal, Yuan Pu, Laura Riva, Xin Yin, Sanju Sinha, Nishanth Ulhas Nair, Sumit K Chanda, Eytan Ruppin
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/7f7daa898bfc42e18657f5c1309d7466
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7f7daa898bfc42e18657f5c1309d7466
record_format dspace
spelling oai:doaj.org-article:7f7daa898bfc42e18657f5c1309d74662021-11-29T08:21:36ZGenome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets1744-429210.15252/msb.202110260https://doaj.org/article/7f7daa898bfc42e18657f5c1309d74662021-11-01T00:00:00Zhttps://doi.org/10.15252/msb.202110260https://doaj.org/toc/1744-4292Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS‐CoV‐2 infection using genome‐scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS‐CoV‐2 infection. We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco‐2 cells. Further generating and analyzing RNA‐sequencing data of remdesivir‐treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti‐SARS‐CoV‐2 drug. Our study provides clinical data‐supported candidate anti‐SARS‐CoV‐2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.Kuoyuan ChengLaura Martin‐SanchoLipika R PalYuan PuLaura RivaXin YinSanju SinhaNishanth Ulhas NairSumit K ChandaEytan RuppinWileyarticleantiviral targetgenome‐scale metabolic modelingremdesivirRNAi screenSARS‐CoV‐2Biology (General)QH301-705.5Medicine (General)R5-920ENMolecular Systems Biology, Vol 17, Iss 11, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic antiviral target
genome‐scale metabolic modeling
remdesivir
RNAi screen
SARS‐CoV‐2
Biology (General)
QH301-705.5
Medicine (General)
R5-920
spellingShingle antiviral target
genome‐scale metabolic modeling
remdesivir
RNAi screen
SARS‐CoV‐2
Biology (General)
QH301-705.5
Medicine (General)
R5-920
Kuoyuan Cheng
Laura Martin‐Sancho
Lipika R Pal
Yuan Pu
Laura Riva
Xin Yin
Sanju Sinha
Nishanth Ulhas Nair
Sumit K Chanda
Eytan Ruppin
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
description Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS‐CoV‐2 infection using genome‐scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS‐CoV‐2 infection. We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco‐2 cells. Further generating and analyzing RNA‐sequencing data of remdesivir‐treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti‐SARS‐CoV‐2 drug. Our study provides clinical data‐supported candidate anti‐SARS‐CoV‐2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.
format article
author Kuoyuan Cheng
Laura Martin‐Sancho
Lipika R Pal
Yuan Pu
Laura Riva
Xin Yin
Sanju Sinha
Nishanth Ulhas Nair
Sumit K Chanda
Eytan Ruppin
author_facet Kuoyuan Cheng
Laura Martin‐Sancho
Lipika R Pal
Yuan Pu
Laura Riva
Xin Yin
Sanju Sinha
Nishanth Ulhas Nair
Sumit K Chanda
Eytan Ruppin
author_sort Kuoyuan Cheng
title Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
title_short Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
title_full Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
title_fullStr Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
title_full_unstemmed Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
title_sort genome‐scale metabolic modeling reveals sars‐cov‐2‐induced metabolic changes and antiviral targets
publisher Wiley
publishDate 2021
url https://doaj.org/article/7f7daa898bfc42e18657f5c1309d7466
work_keys_str_mv AT kuoyuancheng genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT lauramartinsancho genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT lipikarpal genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT yuanpu genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT laurariva genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT xinyin genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT sanjusinha genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT nishanthulhasnair genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT sumitkchanda genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
AT eytanruppin genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets
_version_ 1718407472109060096