Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronavirus...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f7daa898bfc42e18657f5c1309d7466 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7f7daa898bfc42e18657f5c1309d7466 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7f7daa898bfc42e18657f5c1309d74662021-11-29T08:21:36ZGenome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets1744-429210.15252/msb.202110260https://doaj.org/article/7f7daa898bfc42e18657f5c1309d74662021-11-01T00:00:00Zhttps://doi.org/10.15252/msb.202110260https://doaj.org/toc/1744-4292Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS‐CoV‐2 infection using genome‐scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS‐CoV‐2 infection. We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco‐2 cells. Further generating and analyzing RNA‐sequencing data of remdesivir‐treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti‐SARS‐CoV‐2 drug. Our study provides clinical data‐supported candidate anti‐SARS‐CoV‐2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.Kuoyuan ChengLaura Martin‐SanchoLipika R PalYuan PuLaura RivaXin YinSanju SinhaNishanth Ulhas NairSumit K ChandaEytan RuppinWileyarticleantiviral targetgenome‐scale metabolic modelingremdesivirRNAi screenSARS‐CoV‐2Biology (General)QH301-705.5Medicine (General)R5-920ENMolecular Systems Biology, Vol 17, Iss 11, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
antiviral target genome‐scale metabolic modeling remdesivir RNAi screen SARS‐CoV‐2 Biology (General) QH301-705.5 Medicine (General) R5-920 |
spellingShingle |
antiviral target genome‐scale metabolic modeling remdesivir RNAi screen SARS‐CoV‐2 Biology (General) QH301-705.5 Medicine (General) R5-920 Kuoyuan Cheng Laura Martin‐Sancho Lipika R Pal Yuan Pu Laura Riva Xin Yin Sanju Sinha Nishanth Ulhas Nair Sumit K Chanda Eytan Ruppin Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
description |
Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS‐CoV‐2 infection using genome‐scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS‐CoV‐2 infection. We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco‐2 cells. Further generating and analyzing RNA‐sequencing data of remdesivir‐treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti‐SARS‐CoV‐2 drug. Our study provides clinical data‐supported candidate anti‐SARS‐CoV‐2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy. |
format |
article |
author |
Kuoyuan Cheng Laura Martin‐Sancho Lipika R Pal Yuan Pu Laura Riva Xin Yin Sanju Sinha Nishanth Ulhas Nair Sumit K Chanda Eytan Ruppin |
author_facet |
Kuoyuan Cheng Laura Martin‐Sancho Lipika R Pal Yuan Pu Laura Riva Xin Yin Sanju Sinha Nishanth Ulhas Nair Sumit K Chanda Eytan Ruppin |
author_sort |
Kuoyuan Cheng |
title |
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
title_short |
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
title_full |
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
title_fullStr |
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
title_full_unstemmed |
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets |
title_sort |
genome‐scale metabolic modeling reveals sars‐cov‐2‐induced metabolic changes and antiviral targets |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/7f7daa898bfc42e18657f5c1309d7466 |
work_keys_str_mv |
AT kuoyuancheng genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT lauramartinsancho genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT lipikarpal genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT yuanpu genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT laurariva genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT xinyin genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT sanjusinha genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT nishanthulhasnair genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT sumitkchanda genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets AT eytanruppin genomescalemetabolicmodelingrevealssarscov2inducedmetabolicchangesandantiviraltargets |
_version_ |
1718407472109060096 |