Shifting the optimal stiffness for cell migration

Cell migration is sensitive to environmental stiffness, but how cells sense optimal stiffness is not known. Here the authors develop a model that predicts that the optimum can be shifted by altering the number of active molecular motors and clutches, and verify their model in two cell types.

Guardado en:
Detalles Bibliográficos
Autores principales: Benjamin L. Bangasser, Ghaidan A. Shamsan, Clarence E. Chan, Kwaku N. Opoku, Erkan Tüzel, Benjamin W. Schlichtmann, Jesse A. Kasim, Benjamin J. Fuller, Brannon R. McCullough, Steven S. Rosenfeld, David J. Odde
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/7f8be4a890ad4dfa87e307c6843951c7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7f8be4a890ad4dfa87e307c6843951c7
record_format dspace
spelling oai:doaj.org-article:7f8be4a890ad4dfa87e307c6843951c72021-12-02T14:40:34ZShifting the optimal stiffness for cell migration10.1038/ncomms153132041-1723https://doaj.org/article/7f8be4a890ad4dfa87e307c6843951c72017-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms15313https://doaj.org/toc/2041-1723Cell migration is sensitive to environmental stiffness, but how cells sense optimal stiffness is not known. Here the authors develop a model that predicts that the optimum can be shifted by altering the number of active molecular motors and clutches, and verify their model in two cell types.Benjamin L. BangasserGhaidan A. ShamsanClarence E. ChanKwaku N. OpokuErkan TüzelBenjamin W. SchlichtmannJesse A. KasimBenjamin J. FullerBrannon R. McCulloughSteven S. RosenfeldDavid J. OddeNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Benjamin L. Bangasser
Ghaidan A. Shamsan
Clarence E. Chan
Kwaku N. Opoku
Erkan Tüzel
Benjamin W. Schlichtmann
Jesse A. Kasim
Benjamin J. Fuller
Brannon R. McCullough
Steven S. Rosenfeld
David J. Odde
Shifting the optimal stiffness for cell migration
description Cell migration is sensitive to environmental stiffness, but how cells sense optimal stiffness is not known. Here the authors develop a model that predicts that the optimum can be shifted by altering the number of active molecular motors and clutches, and verify their model in two cell types.
format article
author Benjamin L. Bangasser
Ghaidan A. Shamsan
Clarence E. Chan
Kwaku N. Opoku
Erkan Tüzel
Benjamin W. Schlichtmann
Jesse A. Kasim
Benjamin J. Fuller
Brannon R. McCullough
Steven S. Rosenfeld
David J. Odde
author_facet Benjamin L. Bangasser
Ghaidan A. Shamsan
Clarence E. Chan
Kwaku N. Opoku
Erkan Tüzel
Benjamin W. Schlichtmann
Jesse A. Kasim
Benjamin J. Fuller
Brannon R. McCullough
Steven S. Rosenfeld
David J. Odde
author_sort Benjamin L. Bangasser
title Shifting the optimal stiffness for cell migration
title_short Shifting the optimal stiffness for cell migration
title_full Shifting the optimal stiffness for cell migration
title_fullStr Shifting the optimal stiffness for cell migration
title_full_unstemmed Shifting the optimal stiffness for cell migration
title_sort shifting the optimal stiffness for cell migration
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/7f8be4a890ad4dfa87e307c6843951c7
work_keys_str_mv AT benjaminlbangasser shiftingtheoptimalstiffnessforcellmigration
AT ghaidanashamsan shiftingtheoptimalstiffnessforcellmigration
AT clarenceechan shiftingtheoptimalstiffnessforcellmigration
AT kwakunopoku shiftingtheoptimalstiffnessforcellmigration
AT erkantuzel shiftingtheoptimalstiffnessforcellmigration
AT benjaminwschlichtmann shiftingtheoptimalstiffnessforcellmigration
AT jesseakasim shiftingtheoptimalstiffnessforcellmigration
AT benjaminjfuller shiftingtheoptimalstiffnessforcellmigration
AT brannonrmccullough shiftingtheoptimalstiffnessforcellmigration
AT stevensrosenfeld shiftingtheoptimalstiffnessforcellmigration
AT davidjodde shiftingtheoptimalstiffnessforcellmigration
_version_ 1718390248042397696