Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner
Magnetic actuation of medical devices is of great interest in improving minimally invasive surgery and enabling targeted drug delivery. With untethered, magnetically coated swimmers it is aimed at reaching regions of the body difficult to access with catheters. Such a swimmer was previously presente...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f8f0de10ea14a10b11045304ff3a340 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7f8f0de10ea14a10b11045304ff3a340 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7f8f0de10ea14a10b11045304ff3a3402021-12-05T14:10:42ZActuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner2364-550410.1515/cdbme-2020-3090https://doaj.org/article/7f8f0de10ea14a10b11045304ff3a3402020-09-01T00:00:00Zhttps://doi.org/10.1515/cdbme-2020-3090https://doaj.org/toc/2364-5504Magnetic actuation of medical devices is of great interest in improving minimally invasive surgery and enabling targeted drug delivery. With untethered, magnetically coated swimmers it is aimed at reaching regions of the body difficult to access with catheters. Such a swimmer was previously presented, which is suitable for the navigation by the magnetic fields of a magnetic particle imaging (MPI) scanner. The swimmer could be imaged with MPI as well, enabling the tomographic real-time tracking of the actuation process. In this work the steerability of the swimmer is further investigated in media of varying viscosities. For this, glycerol-water-mixtures of different mixing ratios were used. The velocities of the swimmer were measured for viscosities between those of pure glycerol and pure water. The experiments were performed with an MPI scanner at maximal magnetic field strength of the actuating fields. A viscosity range was found in which the swimmer is steerable by the fields of an MPI scanner, which leads to a prediction of the applicability of the swimmer in different body fluids.Bakenecker Anna C.Chinchilla CarlosBuzug Thorsten M.De Gruyterarticlemagnetic actuationmagnetic manipulationmagnetic particle imagingmpimagnetic nanoparticlesmagnetic swimmerMedicineRENCurrent Directions in Biomedical Engineering, Vol 6, Iss 3, Pp 349-352 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
magnetic actuation magnetic manipulation magnetic particle imaging mpi magnetic nanoparticles magnetic swimmer Medicine R |
spellingShingle |
magnetic actuation magnetic manipulation magnetic particle imaging mpi magnetic nanoparticles magnetic swimmer Medicine R Bakenecker Anna C. Chinchilla Carlos Buzug Thorsten M. Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
description |
Magnetic actuation of medical devices is of great interest in improving minimally invasive surgery and enabling targeted drug delivery. With untethered, magnetically coated swimmers it is aimed at reaching regions of the body difficult to access with catheters. Such a swimmer was previously presented, which is suitable for the navigation by the magnetic fields of a magnetic particle imaging (MPI) scanner. The swimmer could be imaged with MPI as well, enabling the tomographic real-time tracking of the actuation process. In this work the steerability of the swimmer is further investigated in media of varying viscosities. For this, glycerol-water-mixtures of different mixing ratios were used. The velocities of the swimmer were measured for viscosities between those of pure glycerol and pure water. The experiments were performed with an MPI scanner at maximal magnetic field strength of the actuating fields. A viscosity range was found in which the swimmer is steerable by the fields of an MPI scanner, which leads to a prediction of the applicability of the swimmer in different body fluids. |
format |
article |
author |
Bakenecker Anna C. Chinchilla Carlos Buzug Thorsten M. |
author_facet |
Bakenecker Anna C. Chinchilla Carlos Buzug Thorsten M. |
author_sort |
Bakenecker Anna C. |
title |
Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
title_short |
Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
title_full |
Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
title_fullStr |
Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
title_full_unstemmed |
Actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
title_sort |
actuation of a magnetically coated swimmer in viscous media with a magnetic particle imaging scanner |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/7f8f0de10ea14a10b11045304ff3a340 |
work_keys_str_mv |
AT bakeneckerannac actuationofamagneticallycoatedswimmerinviscousmediawithamagneticparticleimagingscanner AT chinchillacarlos actuationofamagneticallycoatedswimmerinviscousmediawithamagneticparticleimagingscanner AT buzugthorstenm actuationofamagneticallycoatedswimmerinviscousmediawithamagneticparticleimagingscanner |
_version_ |
1718371794605309952 |