Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations.
Named entity recognition (NER) is one fundamental task in the natural language processing (NLP) community. Supervised neural network models based on contextualized word representations can achieve highly-competitive performance, which requires a large-scale manually-annotated corpus for training. Wh...
Guardado en:
Autores principales: | Huijiong Yan, Tao Qian, Liang Xie, Shanguang Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f90d99991f446ffb3c4044a3dca981b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhancing unsupervised medical entity linking with multi-instance learning
por: Cheng Yan, et al.
Publicado: (2021) -
Enhancing Korean Named Entity Recognition With Linguistic Tokenization Strategies
por: Gyeongmin Kim, et al.
Publicado: (2021) -
Named Entity Recognition of Enterprise Annual Report Integrated with BERT
por: ZHANG Jingyi, et al.
Publicado: (2021) -
GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning
por: Qinjun Qiu, et al.
Publicado: (2019) -
Video Scene Information Detection Based on Entity Recognition
por: Hui Qian, et al.
Publicado: (2021)