Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

Phase change memories involve crystalline-to-amorphous transformations which require high current densities. Here, the authors introduce extended defects in GeTe crystals, reduce the current densities necessary for amorphization and obtain low-power, scalable memories with multiple resistance states...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pavan Nukala, Chia-Chun Lin, Russell Composto, Ritesh Agarwal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/7f9c771311d547fda7ea11260646e288
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7f9c771311d547fda7ea11260646e288
record_format dspace
spelling oai:doaj.org-article:7f9c771311d547fda7ea11260646e2882021-12-02T17:32:51ZUltralow-power switching via defect engineering in germanium telluride phase-change memory devices10.1038/ncomms104822041-1723https://doaj.org/article/7f9c771311d547fda7ea11260646e2882016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10482https://doaj.org/toc/2041-1723Phase change memories involve crystalline-to-amorphous transformations which require high current densities. Here, the authors introduce extended defects in GeTe crystals, reduce the current densities necessary for amorphization and obtain low-power, scalable memories with multiple resistance states.Pavan NukalaChia-Chun LinRussell CompostoRitesh AgarwalNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-8 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Pavan Nukala
Chia-Chun Lin
Russell Composto
Ritesh Agarwal
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
description Phase change memories involve crystalline-to-amorphous transformations which require high current densities. Here, the authors introduce extended defects in GeTe crystals, reduce the current densities necessary for amorphization and obtain low-power, scalable memories with multiple resistance states.
format article
author Pavan Nukala
Chia-Chun Lin
Russell Composto
Ritesh Agarwal
author_facet Pavan Nukala
Chia-Chun Lin
Russell Composto
Ritesh Agarwal
author_sort Pavan Nukala
title Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
title_short Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
title_full Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
title_fullStr Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
title_full_unstemmed Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
title_sort ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/7f9c771311d547fda7ea11260646e288
work_keys_str_mv AT pavannukala ultralowpowerswitchingviadefectengineeringingermaniumtelluridephasechangememorydevices
AT chiachunlin ultralowpowerswitchingviadefectengineeringingermaniumtelluridephasechangememorydevices
AT russellcomposto ultralowpowerswitchingviadefectengineeringingermaniumtelluridephasechangememorydevices
AT riteshagarwal ultralowpowerswitchingviadefectengineeringingermaniumtelluridephasechangememorydevices
_version_ 1718380198625280000