Generalization properties of neural network approximations to frustrated magnet ground states

Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tom Westerhout, Nikita Astrakhantsev, Konstantin S. Tikhonov, Mikhail I. Katsnelson, Andrey A. Bagrov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustrated systems.