Generalization properties of neural network approximations to frustrated magnet ground states

Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tom Westerhout, Nikita Astrakhantsev, Konstantin S. Tikhonov, Mikhail I. Katsnelson, Andrey A. Bagrov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7fb32dcccfe64492aaf5f24493ed45b7
record_format dspace
spelling oai:doaj.org-article:7fb32dcccfe64492aaf5f24493ed45b72021-12-02T14:40:54ZGeneralization properties of neural network approximations to frustrated magnet ground states10.1038/s41467-020-15402-w2041-1723https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b72020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15402-whttps://doaj.org/toc/2041-1723Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustrated systems.Tom WesterhoutNikita AstrakhantsevKonstantin S. TikhonovMikhail I. KatsnelsonAndrey A. BagrovNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tom Westerhout
Nikita Astrakhantsev
Konstantin S. Tikhonov
Mikhail I. Katsnelson
Andrey A. Bagrov
Generalization properties of neural network approximations to frustrated magnet ground states
description Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustrated systems.
format article
author Tom Westerhout
Nikita Astrakhantsev
Konstantin S. Tikhonov
Mikhail I. Katsnelson
Andrey A. Bagrov
author_facet Tom Westerhout
Nikita Astrakhantsev
Konstantin S. Tikhonov
Mikhail I. Katsnelson
Andrey A. Bagrov
author_sort Tom Westerhout
title Generalization properties of neural network approximations to frustrated magnet ground states
title_short Generalization properties of neural network approximations to frustrated magnet ground states
title_full Generalization properties of neural network approximations to frustrated magnet ground states
title_fullStr Generalization properties of neural network approximations to frustrated magnet ground states
title_full_unstemmed Generalization properties of neural network approximations to frustrated magnet ground states
title_sort generalization properties of neural network approximations to frustrated magnet ground states
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7
work_keys_str_mv AT tomwesterhout generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates
AT nikitaastrakhantsev generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates
AT konstantinstikhonov generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates
AT mikhailikatsnelson generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates
AT andreyabagrov generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates
_version_ 1718390121587277824