Generalization properties of neural network approximations to frustrated magnet ground states
Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustr...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7fb32dcccfe64492aaf5f24493ed45b7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7fb32dcccfe64492aaf5f24493ed45b72021-12-02T14:40:54ZGeneralization properties of neural network approximations to frustrated magnet ground states10.1038/s41467-020-15402-w2041-1723https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b72020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15402-whttps://doaj.org/toc/2041-1723Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustrated systems.Tom WesterhoutNikita AstrakhantsevKonstantin S. TikhonovMikhail I. KatsnelsonAndrey A. BagrovNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tom Westerhout Nikita Astrakhantsev Konstantin S. Tikhonov Mikhail I. Katsnelson Andrey A. Bagrov Generalization properties of neural network approximations to frustrated magnet ground states |
description |
Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustrated systems. |
format |
article |
author |
Tom Westerhout Nikita Astrakhantsev Konstantin S. Tikhonov Mikhail I. Katsnelson Andrey A. Bagrov |
author_facet |
Tom Westerhout Nikita Astrakhantsev Konstantin S. Tikhonov Mikhail I. Katsnelson Andrey A. Bagrov |
author_sort |
Tom Westerhout |
title |
Generalization properties of neural network approximations to frustrated magnet ground states |
title_short |
Generalization properties of neural network approximations to frustrated magnet ground states |
title_full |
Generalization properties of neural network approximations to frustrated magnet ground states |
title_fullStr |
Generalization properties of neural network approximations to frustrated magnet ground states |
title_full_unstemmed |
Generalization properties of neural network approximations to frustrated magnet ground states |
title_sort |
generalization properties of neural network approximations to frustrated magnet ground states |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7 |
work_keys_str_mv |
AT tomwesterhout generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates AT nikitaastrakhantsev generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates AT konstantinstikhonov generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates AT mikhailikatsnelson generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates AT andreyabagrov generalizationpropertiesofneuralnetworkapproximationstofrustratedmagnetgroundstates |
_version_ |
1718390121587277824 |