Generalization properties of neural network approximations to frustrated magnet ground states
Neural network representations of quantum states are hoped to provide an efficient basis for numerical methods without the need for case-by-case trial wave functions. Here the authors show that limited generalization capacity of such representations is responsible for convergence problems for frustr...
Guardado en:
Autores principales: | Tom Westerhout, Nikita Astrakhantsev, Konstantin S. Tikhonov, Mikhail I. Katsnelson, Andrey A. Bagrov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fb32dcccfe64492aaf5f24493ed45b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Magnetic ground state of SrRuO3 thin film and applicability of standard first-principles approximations to metallic magnetism
por: Siheon Ryee, et al.
Publicado: (2017) -
Edge states and skyrmion dynamics in nanostripes of frustrated magnets
por: A. O. Leonov, et al.
Publicado: (2017) -
Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
por: Ze Hu, et al.
Publicado: (2020) -
Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
por: Yoshifumi Tokiwa, et al.
Publicado: (2021) -
Magnetic ground state of FeSe
por: Qisi Wang, et al.
Publicado: (2016)