A pseudo-softmax function for hardware-based high speed image classification
Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learn...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7fd239c516c54de8b74b325a8777bbfd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7fd239c516c54de8b74b325a8777bbfd2021-12-02T18:46:55ZA pseudo-softmax function for hardware-based high speed image classification10.1038/s41598-021-94691-72045-2322https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94691-7https://doaj.org/toc/2045-2322Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-softmax design, intended for efficient hardware implementation, exploits the typical integer quantization of hardware-based Neural Networks obtaining an accurate approximation of the result. In the paper, a detailed description of the architecture is given and an extensive analysis of the approximation error is performed by using both custom stimuli and real-world Convolutional Neural Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to state-of-the-art architectures show reduced approximation errors.Gian Carlo CardarilliLuca Di NunzioRocco FazzolariDaniele GiardinoAlberto NannarelliMarco ReSergio SpanòNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Gian Carlo Cardarilli Luca Di Nunzio Rocco Fazzolari Daniele Giardino Alberto Nannarelli Marco Re Sergio Spanò A pseudo-softmax function for hardware-based high speed image classification |
description |
Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-softmax design, intended for efficient hardware implementation, exploits the typical integer quantization of hardware-based Neural Networks obtaining an accurate approximation of the result. In the paper, a detailed description of the architecture is given and an extensive analysis of the approximation error is performed by using both custom stimuli and real-world Convolutional Neural Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to state-of-the-art architectures show reduced approximation errors. |
format |
article |
author |
Gian Carlo Cardarilli Luca Di Nunzio Rocco Fazzolari Daniele Giardino Alberto Nannarelli Marco Re Sergio Spanò |
author_facet |
Gian Carlo Cardarilli Luca Di Nunzio Rocco Fazzolari Daniele Giardino Alberto Nannarelli Marco Re Sergio Spanò |
author_sort |
Gian Carlo Cardarilli |
title |
A pseudo-softmax function for hardware-based high speed image classification |
title_short |
A pseudo-softmax function for hardware-based high speed image classification |
title_full |
A pseudo-softmax function for hardware-based high speed image classification |
title_fullStr |
A pseudo-softmax function for hardware-based high speed image classification |
title_full_unstemmed |
A pseudo-softmax function for hardware-based high speed image classification |
title_sort |
pseudo-softmax function for hardware-based high speed image classification |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd |
work_keys_str_mv |
AT giancarlocardarilli apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT lucadinunzio apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT roccofazzolari apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT danielegiardino apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT albertonannarelli apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT marcore apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT sergiospano apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT giancarlocardarilli pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT lucadinunzio pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT roccofazzolari pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT danielegiardino pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT albertonannarelli pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT marcore pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification AT sergiospano pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification |
_version_ |
1718377687956848640 |