A pseudo-softmax function for hardware-based high speed image classification

Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Alberto Nannarelli, Marco Re, Sergio Spanò
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7fd239c516c54de8b74b325a8777bbfd
record_format dspace
spelling oai:doaj.org-article:7fd239c516c54de8b74b325a8777bbfd2021-12-02T18:46:55ZA pseudo-softmax function for hardware-based high speed image classification10.1038/s41598-021-94691-72045-2322https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94691-7https://doaj.org/toc/2045-2322Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-softmax design, intended for efficient hardware implementation, exploits the typical integer quantization of hardware-based Neural Networks obtaining an accurate approximation of the result. In the paper, a detailed description of the architecture is given and an extensive analysis of the approximation error is performed by using both custom stimuli and real-world Convolutional Neural Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to state-of-the-art architectures show reduced approximation errors.Gian Carlo CardarilliLuca Di NunzioRocco FazzolariDaniele GiardinoAlberto NannarelliMarco ReSergio SpanòNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Gian Carlo Cardarilli
Luca Di Nunzio
Rocco Fazzolari
Daniele Giardino
Alberto Nannarelli
Marco Re
Sergio Spanò
A pseudo-softmax function for hardware-based high speed image classification
description Abstract In this work a novel architecture, named pseudo-softmax, to compute an approximated form of the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-softmax design, intended for efficient hardware implementation, exploits the typical integer quantization of hardware-based Neural Networks obtaining an accurate approximation of the result. In the paper, a detailed description of the architecture is given and an extensive analysis of the approximation error is performed by using both custom stimuli and real-world Convolutional Neural Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to state-of-the-art architectures show reduced approximation errors.
format article
author Gian Carlo Cardarilli
Luca Di Nunzio
Rocco Fazzolari
Daniele Giardino
Alberto Nannarelli
Marco Re
Sergio Spanò
author_facet Gian Carlo Cardarilli
Luca Di Nunzio
Rocco Fazzolari
Daniele Giardino
Alberto Nannarelli
Marco Re
Sergio Spanò
author_sort Gian Carlo Cardarilli
title A pseudo-softmax function for hardware-based high speed image classification
title_short A pseudo-softmax function for hardware-based high speed image classification
title_full A pseudo-softmax function for hardware-based high speed image classification
title_fullStr A pseudo-softmax function for hardware-based high speed image classification
title_full_unstemmed A pseudo-softmax function for hardware-based high speed image classification
title_sort pseudo-softmax function for hardware-based high speed image classification
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7fd239c516c54de8b74b325a8777bbfd
work_keys_str_mv AT giancarlocardarilli apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT lucadinunzio apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT roccofazzolari apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT danielegiardino apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT albertonannarelli apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT marcore apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT sergiospano apseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT giancarlocardarilli pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT lucadinunzio pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT roccofazzolari pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT danielegiardino pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT albertonannarelli pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT marcore pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
AT sergiospano pseudosoftmaxfunctionforhardwarebasedhighspeedimageclassification
_version_ 1718377687956848640