Deep forest model for diagnosing COVID-19 from routine blood tests
Abstract The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine l...
Guardado en:
Autores principales: | Maryam AlJame, Ayyub Imtiaz, Imtiaz Ahmad, Ameer Mohammed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fd5830ff5df43808a84ed305b31fa46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
COVID-19 diagnosis by routine blood tests using machine learning
por: Matjaž Kukar, et al.
Publicado: (2021) -
Routine COVID-19 testing may not be necessary for most cancer patients
por: Ali Motlagh, et al.
Publicado: (2021) -
Predicting psoriasis using routine laboratory tests with random forest.
por: Jing Zhou, et al.
Publicado: (2021) -
A bagging dynamic deep learning network for diagnosing COVID-19
por: Zhijun Zhang, et al.
Publicado: (2021) -
Operationalizing a frailty index using routine blood and urine tests
por: Ritt M, et al.
Publicado: (2017)