Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning
It is challenging to extract structural information from EM density maps at intermediate or low resolutions. Here, the authors present Emap2sec+, a program for detecting nucleotides and protein secondary structures in EM density maps at 5 to 10 Å resolution.
Guardado en:
Autores principales: | Xiao Wang, Eman Alnabati, Tunde W. Aderinwale, Sai Raghavendra Maddhuri Venkata Subramaniya, Genki Terashi, Daisuke Kihara |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fdf26b480c34d9188c773c5752a3afa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
por: Aashish Jain, et al.
Publicado: (2021) -
VESPER: global and local cryo-EM map alignment using local density vectors
por: Xusi Han, et al.
Publicado: (2021) -
De novo main-chain modeling for EM maps using MAINMAST
por: Genki Terashi, et al.
Publicado: (2018) -
Measuring local-directional resolution and local anisotropy in cryo-EM maps
por: Jose Luis Vilas, et al.
Publicado: (2020) -
Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase
por: F. Kolbe, et al.
Publicado: (2021)