Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram
Safe driving plays a crucial role in public health, and driver fatigue causes a large proportion of crashes in road driving. Hence, this paper presents the development of an efficient system to determine whether a driver is fatigued during real driving based on 14-channel EEG signals. The complexity...
Guardado en:
Autores principales: | Tao Zhang, Jichi Chen, Enqiu He, Hong Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7feb3d8ba61c499e816d6696738eb350 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fatigue driving detection based on electrooculography: a review
por: Yuanyuan Tian, et al.
Publicado: (2021) -
Fatigue Driving Detection Based on Deep Learning and Multi-Index Fusion
por: Huijie Jia, et al.
Publicado: (2021) -
Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant
por: Dong-Gyu Lee
Publicado: (2021) -
Driving Behavior Classification and Sharing System Using CNN-LSTM Approaches and V2X Communication
por: Seong Kyung Kwon, et al.
Publicado: (2021) -
Simulation of Fretting Fatigue in Conformal and Concentrated Contacts
por: Dag Fritzson, et al.
Publicado: (2011)