Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
For remote sensing scene image classification, many convolution neural networks improve the classification accuracy at the cost of the time and space complexity of the models. This leads to a slow running speed for the model and cannot realize a trade-off between the model accuracy and the model run...
Guardado en:
Autores principales: | Cuiping Shi, Xinlei Zhang, Jingwei Sun, Liguo Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ff1c25b3c504474bd786360b4763f16 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Remote Sensing Image Scene Classification Based on Global Self-Attention Module
por: Qingwen Li, et al.
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021) -
Learning to Identify Illegal Landfills through Scene Classification in Aerial Images
por: Rocio Nahime Torres, et al.
Publicado: (2021) -
Improved Oriented Object Detection in Remote Sensing Images Based on a Three-Point Regression Method
por: Falin Wu, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021)