A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer
Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 p...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fff94167bb54d9d9ccc2351fa73055a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 patients. |
---|