A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer

Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Haonan Lu, Mubarik Arshad, Andrew Thornton, Giacomo Avesani, Paula Cunnea, Ed Curry, Fahdi Kanavati, Jack Liang, Katherine Nixon, Sophie T. Williams, Mona Ali Hassan, David D. L. Bowtell, Hani Gabra, Christina Fotopoulou, Andrea Rockall, Eric O. Aboagye
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/7fff94167bb54d9d9ccc2351fa73055a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 patients.