A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer
Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 p...
Guardado en:
Autores principales: | Haonan Lu, Mubarik Arshad, Andrew Thornton, Giacomo Avesani, Paula Cunnea, Ed Curry, Fahdi Kanavati, Jack Liang, Katherine Nixon, Sophie T. Williams, Mona Ali Hassan, David D. L. Bowtell, Hani Gabra, Christina Fotopoulou, Andrea Rockall, Eric O. Aboagye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7fff94167bb54d9d9ccc2351fa73055a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clinical value of bioelectrical properties of cancerous tissue in advanced epithelial ovarian cancer patients
por: Paula Cunnea, et al.
Publicado: (2018) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning
por: Masayuki Tsuneki, et al.
Publicado: (2021) -
Deterministic phase slips in mesoscopic superconducting rings
por: I. Petković, et al.
Publicado: (2016) -
A mechanism for reversible mesoscopic aggregation in liquid solutions
por: Ho Yin Chan, et al.
Publicado: (2019)