Research note: Examining potential bias in large-scale censored data
We examine potential bias in Facebook’s 10-trillion cell URLs dataset, consisting of URLs shared on its platform and their engagement metrics. Despite the unprecedented size of the dataset, it was altered to protect user privacy in two ways: 1) by adding differentially private noise to engagement co...
Guardado en:
Autores principales: | Jennifer Allen, Markus Mobius, David M. Rothschild, Duncan J. Watts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Harvard Kennedy School
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80016e4f3a1e416fb698034437bd6baa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DETERMINATION OF PARAMETERS AND THEIR RELATIONSHIPS IN SOCIAL NETWORK ACCOUNTS
por: M. Ryspayeva, et al.
Publicado: (2020) -
University Community Members’ Perceptions of Labels for Online Media
por: Ryan Suttle, et al.
Publicado: (2021) -
Content-based fake news classification through modified voting ensemble
por: Jose Fabio Ribeiro Bezerra
Publicado: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021)