A framework for regularized non-negative matrix factorization, with application to the analysis of gene expression data.
Non-negative matrix factorization (NMF) condenses high-dimensional data into lower-dimensional models subject to the requirement that data can only be added, never subtracted. However, the NMF problem does not have a unique solution, creating a need for additional constraints (regularization constra...
Guardado en:
Autores principales: | Leo Taslaman, Björn Nilsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/801bcbbcc3384ae3a416ec9c3e844900 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Convex non-negative matrix factorization for brain tumor delimitation from MRSI data.
por: Sandra Ortega-Martorell, et al.
Publicado: (2012) -
Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization
por: José M. Maisog, et al.
Publicado: (2021) -
Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization
por: Jian K. Liu, et al.
Publicado: (2017) -
Functional biogeography of ocean microbes revealed through non-negative matrix factorization.
por: Xingpeng Jiang, et al.
Publicado: (2012) -
Shape factor for regular and irregular matrix blocks in fractured porous media
por: Peyman Rostami, et al.
Publicado: (2019)