A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring
Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge. However, most data-driven process-monitoring methods assume that historical training data and online t...
Guardado en:
Autores principales: | Chunhua Yang, Huiping Liang, Keke Huang, Yonggang Li, Weihua Gui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/801db0aa512b49229d7754e159648070 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Transfer of Process References between Machine Tools for Online Tool Condition Monitoring
por: Berend Denkena, et al.
Publicado: (2021) -
Repot: Transferable Reinforcement Learning for Quality-Centric Networked Monitoring in Various Environments
por: Youngseok Lee, et al.
Publicado: (2021) -
A Universal and Adaptive Fabric Defect Detection Algorithm Based on Sparse Dictionary Learning
por: Xuejuan Kang, et al.
Publicado: (2020) -
Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
por: Yu Liu, et al.
Publicado: (2021) -
A Matching Algorithm for Underwater Acoustic and Optical Images Based on Image Attribute Transfer and Local Features
por: Xiaoteng Zhou, et al.
Publicado: (2021)