Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil

<p>Ellinaite, a natural analog of the post-spinel phase <span class="inline-formula"><i>β</i></span>-CaCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: V. V. Sharygin, S. N. Britvin, F. V. Kaminsky, R. Wirth, E. N. Nigmatulina, G. A. Yakovlev, K. A. Novoselov, M. N. Murashko
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/802cc9c1293e48f7ab9e950effce8a05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:802cc9c1293e48f7ab9e950effce8a05
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Mineralogy
QE351-399.2
spellingShingle Mineralogy
QE351-399.2
V. V. Sharygin
V. V. Sharygin
S. N. Britvin
S. N. Britvin
F. V. Kaminsky
R. Wirth
E. N. Nigmatulina
G. A. Yakovlev
K. A. Novoselov
M. N. Murashko
Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
description <p>Ellinaite, a natural analog of the post-spinel phase <span class="inline-formula"><i>β</i></span>-CaCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, was discovered at the Hatrurim Basin, Hatrurim pyrometamorphic formation (the Mottled Zone), Israel, and in an inclusion within the super-deep diamond collected at the placer of the Sorriso River, Juína kimberlite field, Brazil. Ellinaite at the Hatrurim Basin is confined to a reduced rankinite–gehlenite paralava, where it occurs as subhedral grains up to 30 <span class="inline-formula">µ</span>m in association with gehlenite, rankinite and pyrrhotite or forms the rims overgrowing zoned chromite–magnesiochromite. The empirical formula of the Hatrurim sample is (Ca<span class="inline-formula"><sub>0.960</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.016</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="715ab2c0c68c332c1914a69030b21427"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00001.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00001.png"/></svg:svg></span></span>Na<span class="inline-formula"><sub>0.012</sub></span>Mg<span class="inline-formula"><sub>0.003</sub>)<sub>0.992</sub></span>(Cr<span class="inline-formula"><sub>1.731</sub></span>V<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.183</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="9e675a19d1978afe3aea17bc8867c91e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00002.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00002.png"/></svg:svg></span></span>Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.068</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ab1761a8fdd0a4d4dad565b54ca3ba37"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00003.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00003.png"/></svg:svg></span></span>Al<span class="inline-formula"><sub>0.023</sub></span>Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.003</mn><mrow><mn mathvariant="normal">4</mn><mo>+</mo></mrow></msubsup><msub><mo>)</mo><mn mathvariant="normal">2.008</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="35234c0de1ff71fb1dedfc110ba65ed6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00004.svg" width="46pt" height="17pt" src="ejm-33-727-2021-ie00004.png"/></svg:svg></span></span>O<span class="inline-formula"><sub>4</sub></span>. The mineral crystallizes in the orthorhombic system, space group <i>Pnma</i>, unit-cell parameters refined from X-ray single-crystal data: <span class="inline-formula"><i>a</i></span> 8.868(9), <span class="inline-formula"><i>b</i></span> 2.885(3), <span class="inline-formula"><i>c</i></span> 10.355(11) Å, <span class="inline-formula"><i>V</i></span> 264.9(5) Å<span class="inline-formula"><sup>3</sup></span> and <span class="inline-formula"><i>Z</i>=4</span>. The crystal structure of ellinaite from the Hatrurim Basin has been solved and refined to <span class="inline-formula"><i>R</i><sub>1</sub>=0.0588</span> based on 388 independent observed reflections. Ellinaite in the Juína diamond occurs within the micron-sized polyphase inclusion in association with ferropericlase, magnesioferrite, orthorhombic MgCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, unidentified iron carbide and graphite. Its empirical formula is Ca<span class="inline-formula"><sub>1.07</sub></span>(Cr<span class="inline-formula"><sub>1.71</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.06</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5e2b230bd4d17aba654069a1b5c33c5e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00005.svg" width="18pt" height="17pt" src="ejm-33-727-2021-ie00005.png"/></svg:svg></span></span>V<span class="inline-formula"><sub>0.06</sub></span>Ti<span class="inline-formula"><sub>0.03</sub></span>Al<span class="inline-formula"><sub>0.03</sub></span>Mg<span class="inline-formula"><sub>0.02</sub></span>Mn<span class="inline-formula"><sub>0.02</sub>)<sub>Σ1.93</sub></span>O<span class="inline-formula"><sub>4</sub></span>. The unit-cell parameters obtained from HRTEM data are as follows: space group <i>Pnma</i>, <span class="inline-formula"><i>a</i></span> 9.017, <span class="inline-formula"><i>b</i></span> 2.874 Å, <span class="inline-formula"><i>c</i></span> 10.170 Å, <span class="inline-formula"><i>V</i></span> 263.55 Å<span class="inline-formula"><sup>3</sup></span>, <span class="inline-formula"><i>Z</i>=4</span>. Ellinaite belongs to a group of natural tunnel-structured oxides of the general formula AB<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, the so-called post-spinel minerals: marokite CaMn<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, xieite FeCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, harmunite CaFe<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, wernerkrauseite CaFe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M51" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="43bc178c8c5b168fa3edb61f0d79ee3f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00006.svg" width="12pt" height="17pt" src="ejm-33-727-2021-ie00006.png"/></svg:svg></span></span>Mn<span class="inline-formula"><sup>4+</sup></span>O<span class="inline-formula"><sub>6</sub></span>, chenmingite FeCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, maohokite MgFe<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span> and tschaunerite Fe(FeTi)O<span class="inline-formula"><sub>4</sub></span>. The mineral from both occurrences seems to be crystallized under highly reduced conditions at high temperatures (<span class="inline-formula"><i>&gt;</i>1000</span> <span class="inline-formula"><sup>∘</sup></span>C), but under different pressure: near-surface (Hatrurim Basin) and lower mantle (Juína diamond).</p>
format article
author V. V. Sharygin
V. V. Sharygin
S. N. Britvin
S. N. Britvin
F. V. Kaminsky
R. Wirth
E. N. Nigmatulina
G. A. Yakovlev
K. A. Novoselov
M. N. Murashko
author_facet V. V. Sharygin
V. V. Sharygin
S. N. Britvin
S. N. Britvin
F. V. Kaminsky
R. Wirth
E. N. Nigmatulina
G. A. Yakovlev
K. A. Novoselov
M. N. Murashko
author_sort V. V. Sharygin
title Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
title_short Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
title_full Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
title_fullStr Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
title_full_unstemmed Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
title_sort ellinaite, cacr<sub>2</sub>o<sub>4</sub>, a new natural post-spinel oxide from hatrurim basin, israel, and juína kimberlite field, brazil
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/802cc9c1293e48f7ab9e950effce8a05
work_keys_str_mv AT vvsharygin ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT vvsharygin ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT snbritvin ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT snbritvin ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT fvkaminsky ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT rwirth ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT ennigmatulina ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT gayakovlev ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT kanovoselov ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
AT mnmurashko ellinaitecacrsub2subosub4subanewnaturalpostspineloxidefromhatrurimbasinisraelandjuinakimberlitefieldbrazil
_version_ 1718373157142790144
spelling oai:doaj.org-article:802cc9c1293e48f7ab9e950effce8a052021-12-03T15:10:18ZEllinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil10.5194/ejm-33-727-20210935-12211617-4011https://doaj.org/article/802cc9c1293e48f7ab9e950effce8a052021-12-01T00:00:00Zhttps://ejm.copernicus.org/articles/33/727/2021/ejm-33-727-2021.pdfhttps://doaj.org/toc/0935-1221https://doaj.org/toc/1617-4011<p>Ellinaite, a natural analog of the post-spinel phase <span class="inline-formula"><i>β</i></span>-CaCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, was discovered at the Hatrurim Basin, Hatrurim pyrometamorphic formation (the Mottled Zone), Israel, and in an inclusion within the super-deep diamond collected at the placer of the Sorriso River, Juína kimberlite field, Brazil. Ellinaite at the Hatrurim Basin is confined to a reduced rankinite–gehlenite paralava, where it occurs as subhedral grains up to 30 <span class="inline-formula">µ</span>m in association with gehlenite, rankinite and pyrrhotite or forms the rims overgrowing zoned chromite–magnesiochromite. The empirical formula of the Hatrurim sample is (Ca<span class="inline-formula"><sub>0.960</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.016</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="715ab2c0c68c332c1914a69030b21427"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00001.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00001.png"/></svg:svg></span></span>Na<span class="inline-formula"><sub>0.012</sub></span>Mg<span class="inline-formula"><sub>0.003</sub>)<sub>0.992</sub></span>(Cr<span class="inline-formula"><sub>1.731</sub></span>V<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.183</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="9e675a19d1978afe3aea17bc8867c91e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00002.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00002.png"/></svg:svg></span></span>Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.068</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ab1761a8fdd0a4d4dad565b54ca3ba37"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00003.svg" width="22pt" height="17pt" src="ejm-33-727-2021-ie00003.png"/></svg:svg></span></span>Al<span class="inline-formula"><sub>0.023</sub></span>Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.003</mn><mrow><mn mathvariant="normal">4</mn><mo>+</mo></mrow></msubsup><msub><mo>)</mo><mn mathvariant="normal">2.008</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="35234c0de1ff71fb1dedfc110ba65ed6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00004.svg" width="46pt" height="17pt" src="ejm-33-727-2021-ie00004.png"/></svg:svg></span></span>O<span class="inline-formula"><sub>4</sub></span>. The mineral crystallizes in the orthorhombic system, space group <i>Pnma</i>, unit-cell parameters refined from X-ray single-crystal data: <span class="inline-formula"><i>a</i></span> 8.868(9), <span class="inline-formula"><i>b</i></span> 2.885(3), <span class="inline-formula"><i>c</i></span> 10.355(11) Å, <span class="inline-formula"><i>V</i></span> 264.9(5) Å<span class="inline-formula"><sup>3</sup></span> and <span class="inline-formula"><i>Z</i>=4</span>. The crystal structure of ellinaite from the Hatrurim Basin has been solved and refined to <span class="inline-formula"><i>R</i><sub>1</sub>=0.0588</span> based on 388 independent observed reflections. Ellinaite in the Juína diamond occurs within the micron-sized polyphase inclusion in association with ferropericlase, magnesioferrite, orthorhombic MgCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, unidentified iron carbide and graphite. Its empirical formula is Ca<span class="inline-formula"><sub>1.07</sub></span>(Cr<span class="inline-formula"><sub>1.71</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.06</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5e2b230bd4d17aba654069a1b5c33c5e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00005.svg" width="18pt" height="17pt" src="ejm-33-727-2021-ie00005.png"/></svg:svg></span></span>V<span class="inline-formula"><sub>0.06</sub></span>Ti<span class="inline-formula"><sub>0.03</sub></span>Al<span class="inline-formula"><sub>0.03</sub></span>Mg<span class="inline-formula"><sub>0.02</sub></span>Mn<span class="inline-formula"><sub>0.02</sub>)<sub>Σ1.93</sub></span>O<span class="inline-formula"><sub>4</sub></span>. The unit-cell parameters obtained from HRTEM data are as follows: space group <i>Pnma</i>, <span class="inline-formula"><i>a</i></span> 9.017, <span class="inline-formula"><i>b</i></span> 2.874 Å, <span class="inline-formula"><i>c</i></span> 10.170 Å, <span class="inline-formula"><i>V</i></span> 263.55 Å<span class="inline-formula"><sup>3</sup></span>, <span class="inline-formula"><i>Z</i>=4</span>. Ellinaite belongs to a group of natural tunnel-structured oxides of the general formula AB<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, the so-called post-spinel minerals: marokite CaMn<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, xieite FeCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, harmunite CaFe<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, wernerkrauseite CaFe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M51" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="43bc178c8c5b168fa3edb61f0d79ee3f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-727-2021-ie00006.svg" width="12pt" height="17pt" src="ejm-33-727-2021-ie00006.png"/></svg:svg></span></span>Mn<span class="inline-formula"><sup>4+</sup></span>O<span class="inline-formula"><sub>6</sub></span>, chenmingite FeCr<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span>, maohokite MgFe<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>4</sub></span> and tschaunerite Fe(FeTi)O<span class="inline-formula"><sub>4</sub></span>. The mineral from both occurrences seems to be crystallized under highly reduced conditions at high temperatures (<span class="inline-formula"><i>&gt;</i>1000</span> <span class="inline-formula"><sup>∘</sup></span>C), but under different pressure: near-surface (Hatrurim Basin) and lower mantle (Juína diamond).</p>V. V. SharyginV. V. SharyginS. N. BritvinS. N. BritvinF. V. KaminskyR. WirthE. N. NigmatulinaG. A. YakovlevK. A. NovoselovM. N. MurashkoCopernicus PublicationsarticleMineralogyQE351-399.2ENEuropean Journal of Mineralogy, Vol 33, Pp 727-742 (2021)