Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes
Abstract Network analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered relational data is error-free, and reliable and accurately reflects the system to be analysed. Especially if the network consists of multiple gro...
Enregistré dans:
Auteurs principaux: | Leonie Neuhäuser, Felix I. Stamm, Florian Lemmerich, Michael T. Schaub, Markus Strohmaier |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8031096ebc0b46e7a56d0f09181872d0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Global and local community memberships for estimating spreading capability of nodes in social networks
par: Simon Krukowski, et autres
Publié: (2021) -
Modularity affects the robustness of scale-free model and real-world social networks under betweenness and degree-based node attack
par: Quang Nguyen, et autres
Publié: (2021) -
Inclusive universities: evidence from the Erasmus program
par: Luca De Benedictis, et autres
Publié: (2021) -
Graph convolutional and attention models for entity classification in multilayer networks
par: Lorenzo Zangari, et autres
Publié: (2021) -
Editorial Board
Publié: (2021)