Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes
Abstract Network analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered relational data is error-free, and reliable and accurately reflects the system to be analysed. Especially if the network consists of multiple gro...
Guardado en:
Autores principales: | Leonie Neuhäuser, Felix I. Stamm, Florian Lemmerich, Michael T. Schaub, Markus Strohmaier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8031096ebc0b46e7a56d0f09181872d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Global and local community memberships for estimating spreading capability of nodes in social networks
por: Simon Krukowski, et al.
Publicado: (2021) -
Modularity affects the robustness of scale-free model and real-world social networks under betweenness and degree-based node attack
por: Quang Nguyen, et al.
Publicado: (2021) -
Inclusive universities: evidence from the Erasmus program
por: Luca De Benedictis, et al.
Publicado: (2021) -
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021) -
Editorial Board
Publicado: (2021)