Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter
Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a theoretical foundation for its development. However, limited by the lack of guidelines in model parameter selection and the inability to obtain personal tissue information in practice, EEG modeling in BCI is mainly focu...
Guardado en:
Autores principales: | Xiaodong Zhang, Zhufeng Lu, Teng Zhang, Hanzhe Li, Yachun Wang, Qing Tao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8044c90a3f8642e69b806e9bd304e20d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
por: Jothi Letchumy Mahendra Kumar, et al.
Publicado: (2021) -
Control de movimiento robótico con detección cognitiva y facial mediante Emotiv EEG
por: Monge Lay,Sebastián, et al.
Publicado: (2015) -
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
por: Suwanto Suwanto, et al.
Publicado: (2019) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
Optical Properties of GaN-Based Green Light-Emitting Diodes Influenced by Low-Temperature p-GaN Layer
por: Jianfei Li, et al.
Publicado: (2021)