Network Anatomy Controlling Abrupt-like Percolation Transition
Abstract We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient perco...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80469ed3957b45d794ea889c3f9154f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:80469ed3957b45d794ea889c3f9154f2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:80469ed3957b45d794ea889c3f9154f22021-12-02T11:53:05ZNetwork Anatomy Controlling Abrupt-like Percolation Transition10.1038/s41598-017-00242-42045-2322https://doaj.org/article/80469ed3957b45d794ea889c3f9154f22017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00242-4https://doaj.org/toc/2045-2322Abstract We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy from this new viewpoint of network anatomy, which enables abrupt-like percolation transition through removal of a small amount of cartilage links, which play a crucial role in network connectivity. Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each cluster and evaluate power exponents, which characterize network structures as seen in the real large-scale network of trading business firms and in the Erdős-Rényi network. Finally, we observe changes in the transition point for random bond percolation process, demonstrating that the addition of muscle links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the percolation transition for an arbitrary network.Hirokazu KawamotoHideki TakayasuMisako TakayasuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hirokazu Kawamoto Hideki Takayasu Misako Takayasu Network Anatomy Controlling Abrupt-like Percolation Transition |
description |
Abstract We virtually dissect complex networks in order to understand their internal structure, just as doctors do with the bodies of animals. Our novel method classifies network links into four categories: bone, fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy from this new viewpoint of network anatomy, which enables abrupt-like percolation transition through removal of a small amount of cartilage links, which play a crucial role in network connectivity. Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each cluster and evaluate power exponents, which characterize network structures as seen in the real large-scale network of trading business firms and in the Erdős-Rényi network. Finally, we observe changes in the transition point for random bond percolation process, demonstrating that the addition of muscle links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the percolation transition for an arbitrary network. |
format |
article |
author |
Hirokazu Kawamoto Hideki Takayasu Misako Takayasu |
author_facet |
Hirokazu Kawamoto Hideki Takayasu Misako Takayasu |
author_sort |
Hirokazu Kawamoto |
title |
Network Anatomy Controlling Abrupt-like Percolation Transition |
title_short |
Network Anatomy Controlling Abrupt-like Percolation Transition |
title_full |
Network Anatomy Controlling Abrupt-like Percolation Transition |
title_fullStr |
Network Anatomy Controlling Abrupt-like Percolation Transition |
title_full_unstemmed |
Network Anatomy Controlling Abrupt-like Percolation Transition |
title_sort |
network anatomy controlling abrupt-like percolation transition |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/80469ed3957b45d794ea889c3f9154f2 |
work_keys_str_mv |
AT hirokazukawamoto networkanatomycontrollingabruptlikepercolationtransition AT hidekitakayasu networkanatomycontrollingabruptlikepercolationtransition AT misakotakayasu networkanatomycontrollingabruptlikepercolationtransition |
_version_ |
1718394875365294080 |