Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels

Ghada Ahmed El-Emam,1 Germeen NS Girgis,1 Mohammed Fawzy Hamed,2 Osama Abd El-Azeem Soliman,1 Abd El Gawad H Abd El Gawad1 1Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; 2Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El-Emam GA, Girgis GNS, Hamed MF, El-Azeem Soliman OA, Abd El Gawad AEGH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2021
Materias:
Acceso en línea:https://doaj.org/article/804dfc1ef5b94be6a692d201b4d448f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:804dfc1ef5b94be6a692d201b4d448f9
record_format dspace
spelling oai:doaj.org-article:804dfc1ef5b94be6a692d201b4d448f92021-12-02T19:49:53ZFormulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels1178-2013https://doaj.org/article/804dfc1ef5b94be6a692d201b4d448f92021-11-01T00:00:00Zhttps://www.dovepress.com/formulation-and-pathohistological-study-of-mizolastinesolid-lipid-nano-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Ghada Ahmed El-Emam,1 Germeen NS Girgis,1 Mohammed Fawzy Hamed,2 Osama Abd El-Azeem Soliman,1 Abd El Gawad H Abd El Gawad1 1Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; 2Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, EgyptCorrespondence: Ghada Ahmed El-EmamDepartment of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, EgyptTel +20 10-9059-0989Email ghadaelemam26@yahoo.comBackground: Mizolastine (MZL) is a dual-action nonsedating topical antihistamine anti-inflammatory agent that is used to relieve allergic conditions, such as rhinitis and conjunctivitis. Solid lipid nanoparticles (SLNs) are advanced delivery system in ophthalmology, with the merits of increasing the corneal drug absorption and hence improved bioavailability with the objective of ocular drug targeting.Methods: First, MZL was formulated as MZL-SLNs by hot homogenization/ultrasonication adopting a 32 full factorial design. Solid-state characterization, in vitro release, and stability studies have been performed. Then, the optimized MZL-SLNs formula has been incorporated into ocular hydrogels using 1.5% w/v Na alginate and 5% w/v polyvinylpyrrolidone K90. The gels were evaluated via in vitro release as well as in vivo studies by applying allergic conjunctivitis congestion in a rabbit-eye model.Results: The optimized formula (F4) was characterized by the highest entrapment efficiency (86.5± 1.47%), the smallest mean particle size (202.3± 13.59 nm), and reasonable zeta potential (− 22.03± 3.65 mV). Solid-state characterization of the encapsulation of MZL in SLNs was undertaken. In vitro results showed a sustained release profile from MZL-SLNs up to 30 hours with a non-Fickian Higuchi kinetic model. Stability studies confirmed immutability of freeze-dried MZL-SLNs (F4) upon storage for 6 months. Finally, hydrogel formulations containing MZL-SLNs, proved ocular congestion disappearance with completely repaired conjunctiva after 24 hours. Moreover, pretreatment with MZL-SLNs–loaded hydrogel imparted markedly decreased TNF-α and VEGF-expression levels in rabbits conjunctivae compared with post-treatment with the same formula.Conclusion: MZL-SLNs could be considered a promising stable sustained-release nanoparticulate system for preparing ocular hydrogel as effective antiallergy ocular delivery systems.Keywords: mizolastine, solid lipid nanoparticles, 32 full factorial design, sustained release, in vivo studyEl-Emam GAGirgis GNSHamed MFEl-Azeem Soliman OAAbd El Gawad AEGHDove Medical Pressarticlemizolastinesolid lipid nanoparticles32 full factorial designsustained releaseand in-vivo study.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 7775-7799 (2021)
institution DOAJ
collection DOAJ
language EN
topic mizolastine
solid lipid nanoparticles
32 full factorial design
sustained release
and in-vivo study.
Medicine (General)
R5-920
spellingShingle mizolastine
solid lipid nanoparticles
32 full factorial design
sustained release
and in-vivo study.
Medicine (General)
R5-920
El-Emam GA
Girgis GNS
Hamed MF
El-Azeem Soliman OA
Abd El Gawad AEGH
Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
description Ghada Ahmed El-Emam,1 Germeen NS Girgis,1 Mohammed Fawzy Hamed,2 Osama Abd El-Azeem Soliman,1 Abd El Gawad H Abd El Gawad1 1Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; 2Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, EgyptCorrespondence: Ghada Ahmed El-EmamDepartment of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, EgyptTel +20 10-9059-0989Email ghadaelemam26@yahoo.comBackground: Mizolastine (MZL) is a dual-action nonsedating topical antihistamine anti-inflammatory agent that is used to relieve allergic conditions, such as rhinitis and conjunctivitis. Solid lipid nanoparticles (SLNs) are advanced delivery system in ophthalmology, with the merits of increasing the corneal drug absorption and hence improved bioavailability with the objective of ocular drug targeting.Methods: First, MZL was formulated as MZL-SLNs by hot homogenization/ultrasonication adopting a 32 full factorial design. Solid-state characterization, in vitro release, and stability studies have been performed. Then, the optimized MZL-SLNs formula has been incorporated into ocular hydrogels using 1.5% w/v Na alginate and 5% w/v polyvinylpyrrolidone K90. The gels were evaluated via in vitro release as well as in vivo studies by applying allergic conjunctivitis congestion in a rabbit-eye model.Results: The optimized formula (F4) was characterized by the highest entrapment efficiency (86.5± 1.47%), the smallest mean particle size (202.3± 13.59 nm), and reasonable zeta potential (− 22.03± 3.65 mV). Solid-state characterization of the encapsulation of MZL in SLNs was undertaken. In vitro results showed a sustained release profile from MZL-SLNs up to 30 hours with a non-Fickian Higuchi kinetic model. Stability studies confirmed immutability of freeze-dried MZL-SLNs (F4) upon storage for 6 months. Finally, hydrogel formulations containing MZL-SLNs, proved ocular congestion disappearance with completely repaired conjunctiva after 24 hours. Moreover, pretreatment with MZL-SLNs–loaded hydrogel imparted markedly decreased TNF-α and VEGF-expression levels in rabbits conjunctivae compared with post-treatment with the same formula.Conclusion: MZL-SLNs could be considered a promising stable sustained-release nanoparticulate system for preparing ocular hydrogel as effective antiallergy ocular delivery systems.Keywords: mizolastine, solid lipid nanoparticles, 32 full factorial design, sustained release, in vivo study
format article
author El-Emam GA
Girgis GNS
Hamed MF
El-Azeem Soliman OA
Abd El Gawad AEGH
author_facet El-Emam GA
Girgis GNS
Hamed MF
El-Azeem Soliman OA
Abd El Gawad AEGH
author_sort El-Emam GA
title Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
title_short Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
title_full Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
title_fullStr Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
title_full_unstemmed Formulation and Pathohistological Study of Mizolastine–Solid Lipid Nanoparticles–Loaded Ocular Hydrogels
title_sort formulation and pathohistological study of mizolastine–solid lipid nanoparticles–loaded ocular hydrogels
publisher Dove Medical Press
publishDate 2021
url https://doaj.org/article/804dfc1ef5b94be6a692d201b4d448f9
work_keys_str_mv AT elemamga formulationandpathohistologicalstudyofmizolastinendashsolidlipidnanoparticlesndashloadedocularhydrogels
AT girgisgns formulationandpathohistologicalstudyofmizolastinendashsolidlipidnanoparticlesndashloadedocularhydrogels
AT hamedmf formulationandpathohistologicalstudyofmizolastinendashsolidlipidnanoparticlesndashloadedocularhydrogels
AT elazeemsolimanoa formulationandpathohistologicalstudyofmizolastinendashsolidlipidnanoparticlesndashloadedocularhydrogels
AT abdelgawadaegh formulationandpathohistologicalstudyofmizolastinendashsolidlipidnanoparticlesndashloadedocularhydrogels
_version_ 1718375969935327232