Charge localization and hopping in a topologically engineered graphene nanoribbon
Abstract Graphene nanoribbons (GNRs) are promising quasi-one-dimensional materials with various technological applications. Recently, methods that allowed for the control of GNR’s topology have been developed, resulting in connected nanoribbons composed of two distinct armchair GNR families. Here, w...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80550517a83d4a85bbc4eeab06198c20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Graphene nanoribbons (GNRs) are promising quasi-one-dimensional materials with various technological applications. Recently, methods that allowed for the control of GNR’s topology have been developed, resulting in connected nanoribbons composed of two distinct armchair GNR families. Here, we employed an extended version of the Su-Schrieffer-Heeger model to study the morphological and electronic properties of these novel GNRs. Results demonstrated that charge injection leads to the formation of polarons that localize strictly in the 9-AGNRs segments of the system. Its mobility is highly impaired by the system’s topology. The polaron displaces through hopping between 9-AGNR portions of the system, suggesting this mechanism for charge transport in this material. |
---|