Functional interpretation of single cell similarity maps
The increasing accessibility of single cell RNA sequencing demands tools that enable data visualization and interpretation. Here, the authors introduce Vision, a flexible annotation tool that operates directly on the manifold of cell-cell similarity and aids interpretation of cellular heterogeneity.
Guardado en:
Autores principales: | David DeTomaso, Matthew G. Jones, Meena Subramaniam, Tal Ashuach, Chun J. Ye, Nir Yosef |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/805bad0f014e42d38fb388a963346447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Random Forest Similarity Maps: A Scalable Visual Representation for Global and Local Interpretation
por: Dipankar Mazumdar, et al.
Publicado: (2021) -
Simulating multiple faceted variability in single cell RNA sequencing
por: Xiuwei Zhang, et al.
Publicado: (2019) -
Archaeological Live Interpretations, Docu-Soaps and Themed Walks: Similarities and Differences
por: S. Willner, et al.
Publicado: (2014) -
Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships
por: Jon Sánchez-Valle, et al.
Publicado: (2020) -
Accurate Single-Cell Clustering through Ensemble Similarity Learning
por: Hyundoo Jeong, et al.
Publicado: (2021)