Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.

Trimetazidine, a piperazine derivative used as an anti-anginal agent, improves myocardial glucose utilization through inhibition of fatty acid metabolism. The present study was designed to investigate whether trimetazidine has the protective effects against smoking-induced left ventricular remodelin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiang Zhou, Chao Li, Weiting Xu, Jianchang Chen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8074a9dd820f45b69f4d854ef0ada5cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Trimetazidine, a piperazine derivative used as an anti-anginal agent, improves myocardial glucose utilization through inhibition of fatty acid metabolism. The present study was designed to investigate whether trimetazidine has the protective effects against smoking-induced left ventricular remodeling in rats. In this study, Wistar rats were randomly divided into 3 groups: smoking group (exposed to cigarette smoke), trimetazidine group (exposed to cigarette smoke and treated with trimetazidine), and control group. The echocardiographic and morphometric data indicated that trimetazidine has protective effects against smoking-induced left ventricular remodeling. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and glutathione peroxidase in the supernatant of left ventricular tissue. Cardiomyocyte apoptotic rate was determined by flow cytometry with Annexin V/PI staining. Gene expression and serum levels of inflammatory markers, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, were deteced by quantitative real-time PCR and enzyme-linked immunosorbent assay. Our results suggested that trimetazidine could significantly reduce smoking-induced oxidative stress, apoptosis, and inflammation. In conclusion, our study demonstrates that trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.