Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization
The improved mechanical properties of carbon-doped TiZrN coatings were investigated in terms of the microstructure and bonding state. The carbon incorporation and structural change were confirmed as a shift to lower degree of the diffraction pattern and the decreased grain size from 24.64 to 22.19 n...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/808ace15c03a4e43b8dcd215693f73c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:808ace15c03a4e43b8dcd215693f73c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:808ace15c03a4e43b8dcd215693f73c52021-12-01T14:41:00ZGrain boundary strengthening of carbon-doped TiZrN coatings by laser carburization2187-076410.1080/21870764.2021.1997432https://doaj.org/article/808ace15c03a4e43b8dcd215693f73c52021-12-01T00:00:00Zhttp://dx.doi.org/10.1080/21870764.2021.1997432https://doaj.org/toc/2187-0764The improved mechanical properties of carbon-doped TiZrN coatings were investigated in terms of the microstructure and bonding state. The carbon incorporation and structural change were confirmed as a shift to lower degree of the diffraction pattern and the decreased grain size from 24.64 to 22.19 nm. The clear grain boundaries (GBs) were observed in the carbon-doped coating, and its fast Fourier transform (FFT) exhibited a diffused ring pattern. Edge dislocations were also observed in the inverse FFT image, indicating the formation of an amorphous phase due to laser carburization. From the X-ray photoelectron spectroscopy depth profile analysis, the carbon concentration decreased to 37.26 at.% after carburization, which is non-stoichiometric behavior that suggests the formation of the amorphous carbon (a-C) rather than carbides. Both sp2- and sp3-hybridized bonds were detected in the C 1s spectrum of the carbon-doped coating, indicating that the diffused carbon atoms were trapped in the GBs as a-C. The change in the GB structure increased the compressive residual stress from 3.97 to 4.63 GPa. In addition, the hardness, elastic strain to failure (H/E), and plastic deformation resistance (H3/E2) of the carbon-doped TiZrN increased by 19.22%, 12.64%, and 49.59%, respectively, demonstrating the effect of GB strengthening.Taewoo KimByungHyun LeeSeonghoon KimEunpyo HongIlguk JoHeesoo LeeTaylor & Francis Grouparticlecarbon-doped tizrn coatingsgrain boundary strengtheningamorphous carbonresidual stresselastic recoveryClay industries. Ceramics. GlassTP785-869ENJournal of Asian Ceramic Societies, Vol 0, Iss 0, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
carbon-doped tizrn coatings grain boundary strengthening amorphous carbon residual stress elastic recovery Clay industries. Ceramics. Glass TP785-869 |
spellingShingle |
carbon-doped tizrn coatings grain boundary strengthening amorphous carbon residual stress elastic recovery Clay industries. Ceramics. Glass TP785-869 Taewoo Kim ByungHyun Lee Seonghoon Kim Eunpyo Hong Ilguk Jo Heesoo Lee Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
description |
The improved mechanical properties of carbon-doped TiZrN coatings were investigated in terms of the microstructure and bonding state. The carbon incorporation and structural change were confirmed as a shift to lower degree of the diffraction pattern and the decreased grain size from 24.64 to 22.19 nm. The clear grain boundaries (GBs) were observed in the carbon-doped coating, and its fast Fourier transform (FFT) exhibited a diffused ring pattern. Edge dislocations were also observed in the inverse FFT image, indicating the formation of an amorphous phase due to laser carburization. From the X-ray photoelectron spectroscopy depth profile analysis, the carbon concentration decreased to 37.26 at.% after carburization, which is non-stoichiometric behavior that suggests the formation of the amorphous carbon (a-C) rather than carbides. Both sp2- and sp3-hybridized bonds were detected in the C 1s spectrum of the carbon-doped coating, indicating that the diffused carbon atoms were trapped in the GBs as a-C. The change in the GB structure increased the compressive residual stress from 3.97 to 4.63 GPa. In addition, the hardness, elastic strain to failure (H/E), and plastic deformation resistance (H3/E2) of the carbon-doped TiZrN increased by 19.22%, 12.64%, and 49.59%, respectively, demonstrating the effect of GB strengthening. |
format |
article |
author |
Taewoo Kim ByungHyun Lee Seonghoon Kim Eunpyo Hong Ilguk Jo Heesoo Lee |
author_facet |
Taewoo Kim ByungHyun Lee Seonghoon Kim Eunpyo Hong Ilguk Jo Heesoo Lee |
author_sort |
Taewoo Kim |
title |
Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
title_short |
Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
title_full |
Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
title_fullStr |
Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
title_full_unstemmed |
Grain boundary strengthening of carbon-doped TiZrN coatings by laser carburization |
title_sort |
grain boundary strengthening of carbon-doped tizrn coatings by laser carburization |
publisher |
Taylor & Francis Group |
publishDate |
2021 |
url |
https://doaj.org/article/808ace15c03a4e43b8dcd215693f73c5 |
work_keys_str_mv |
AT taewookim grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization AT byunghyunlee grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization AT seonghoonkim grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization AT eunpyohong grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization AT ilgukjo grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization AT heesoolee grainboundarystrengtheningofcarbondopedtizrncoatingsbylasercarburization |
_version_ |
1718405002768154624 |