Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning
Abstract In two-thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure (ABP) is monitored non-invasively but intermittently using a blood pressure cuff. Since even a few minutes of hypotension increases the risk of mortality and morbidity, for the remainin...
Guardado en:
Autores principales: | Brian L. Hill, Nadav Rakocz, Ákos Rudas, Jeffrey N. Chiang, Sidong Wang, Ira Hofer, Maxime Cannesson, Eran Halperin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80a96a20abd34c43a3f0742ea23f08d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
por: Ira S. Hofer, et al.
Publicado: (2020) -
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
por: Christine K. Lee, et al.
Publicado: (2021) -
Use of non-invasive intracranial pressure pulse waveform to monitor patients with End-Stage Renal Disease (ESRD).
por: Cristiane Rickli, et al.
Publicado: (2021) -
An Improved Electroporator With Continuous Liquid Flow and Double-Exponential Waveform for Liquid Food Pasteurization
por: Rai Naveed Arshad, et al.
Publicado: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Wei Vivian Li, et al.
Publicado: (2018)