An experimentally validated fading model for THz wireless systems

Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Evangelos N. Papasotiriou, Alexandros-Apostolos A. Boulogeorgos, Katsuyuki Haneda, Mar Francis de Guzman, Angeliki Alexiou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:80b1381657e143f6a0814dcacc29d83e
record_format dspace
spelling oai:doaj.org-article:80b1381657e143f6a0814dcacc29d83e2021-12-02T15:14:37ZAn experimentally validated fading model for THz wireless systems10.1038/s41598-021-98065-x2045-2322https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98065-xhttps://doaj.org/toc/2045-2322Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into the terahertz (THz) band, where more than $$20\,{\text {GHz}}$$ 20 GHz of contiguous bandwidth can be exploited. As a result, novel wireless system and network architectures have been reported promising excellence in terms of reliability, massive connectivity, and data-rates. To assess their feasibility and efficiency, it is necessary to develop stochastic channel models that account for the small-scale fading. However, to the best of our knowledge, only initial steps have been so far performed. Motivated by this, this contribution is devoted to take a new look to fading in THz wireless systems, based on three sets of experimental measurements. In more detail, measurements, which have been conducted in a shopping mall, an airport check-in area, and an entrance hall of a university towards different time periods, are used to accurately model the fading distribution. Interestingly, our analysis shows that conventional distributions, such as Rayleigh, Rice, and Nakagami-m, lack fitting accuracy, whereas, the more general, yet tractable, $$\alpha $$ α – $$\mu $$ μ distribution has an almost-excellent fit. In order to quantify their fitting efficiency, we used two well-defined and widely-accepted tests, namely the Kolmogorov–Smirnov and the Kullback–Leibler tests. By accurately modeling the THz wireless channel, this work creates the fundamental tools of developing the theoretical and optimization frameworks for such systems and networks.Evangelos N. PapasotiriouAlexandros-Apostolos A. BoulogeorgosKatsuyuki HanedaMar Francis de GuzmanAngeliki AlexiouNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Evangelos N. Papasotiriou
Alexandros-Apostolos A. Boulogeorgos
Katsuyuki Haneda
Mar Francis de Guzman
Angeliki Alexiou
An experimentally validated fading model for THz wireless systems
description Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into the terahertz (THz) band, where more than $$20\,{\text {GHz}}$$ 20 GHz of contiguous bandwidth can be exploited. As a result, novel wireless system and network architectures have been reported promising excellence in terms of reliability, massive connectivity, and data-rates. To assess their feasibility and efficiency, it is necessary to develop stochastic channel models that account for the small-scale fading. However, to the best of our knowledge, only initial steps have been so far performed. Motivated by this, this contribution is devoted to take a new look to fading in THz wireless systems, based on three sets of experimental measurements. In more detail, measurements, which have been conducted in a shopping mall, an airport check-in area, and an entrance hall of a university towards different time periods, are used to accurately model the fading distribution. Interestingly, our analysis shows that conventional distributions, such as Rayleigh, Rice, and Nakagami-m, lack fitting accuracy, whereas, the more general, yet tractable, $$\alpha $$ α – $$\mu $$ μ distribution has an almost-excellent fit. In order to quantify their fitting efficiency, we used two well-defined and widely-accepted tests, namely the Kolmogorov–Smirnov and the Kullback–Leibler tests. By accurately modeling the THz wireless channel, this work creates the fundamental tools of developing the theoretical and optimization frameworks for such systems and networks.
format article
author Evangelos N. Papasotiriou
Alexandros-Apostolos A. Boulogeorgos
Katsuyuki Haneda
Mar Francis de Guzman
Angeliki Alexiou
author_facet Evangelos N. Papasotiriou
Alexandros-Apostolos A. Boulogeorgos
Katsuyuki Haneda
Mar Francis de Guzman
Angeliki Alexiou
author_sort Evangelos N. Papasotiriou
title An experimentally validated fading model for THz wireless systems
title_short An experimentally validated fading model for THz wireless systems
title_full An experimentally validated fading model for THz wireless systems
title_fullStr An experimentally validated fading model for THz wireless systems
title_full_unstemmed An experimentally validated fading model for THz wireless systems
title_sort experimentally validated fading model for thz wireless systems
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e
work_keys_str_mv AT evangelosnpapasotiriou anexperimentallyvalidatedfadingmodelforthzwirelesssystems
AT alexandrosapostolosaboulogeorgos anexperimentallyvalidatedfadingmodelforthzwirelesssystems
AT katsuyukihaneda anexperimentallyvalidatedfadingmodelforthzwirelesssystems
AT marfrancisdeguzman anexperimentallyvalidatedfadingmodelforthzwirelesssystems
AT angelikialexiou anexperimentallyvalidatedfadingmodelforthzwirelesssystems
AT evangelosnpapasotiriou experimentallyvalidatedfadingmodelforthzwirelesssystems
AT alexandrosapostolosaboulogeorgos experimentallyvalidatedfadingmodelforthzwirelesssystems
AT katsuyukihaneda experimentallyvalidatedfadingmodelforthzwirelesssystems
AT marfrancisdeguzman experimentallyvalidatedfadingmodelforthzwirelesssystems
AT angelikialexiou experimentallyvalidatedfadingmodelforthzwirelesssystems
_version_ 1718387578835566592