An experimentally validated fading model for THz wireless systems
Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:80b1381657e143f6a0814dcacc29d83e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:80b1381657e143f6a0814dcacc29d83e2021-12-02T15:14:37ZAn experimentally validated fading model for THz wireless systems10.1038/s41598-021-98065-x2045-2322https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98065-xhttps://doaj.org/toc/2045-2322Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into the terahertz (THz) band, where more than $$20\,{\text {GHz}}$$ 20 GHz of contiguous bandwidth can be exploited. As a result, novel wireless system and network architectures have been reported promising excellence in terms of reliability, massive connectivity, and data-rates. To assess their feasibility and efficiency, it is necessary to develop stochastic channel models that account for the small-scale fading. However, to the best of our knowledge, only initial steps have been so far performed. Motivated by this, this contribution is devoted to take a new look to fading in THz wireless systems, based on three sets of experimental measurements. In more detail, measurements, which have been conducted in a shopping mall, an airport check-in area, and an entrance hall of a university towards different time periods, are used to accurately model the fading distribution. Interestingly, our analysis shows that conventional distributions, such as Rayleigh, Rice, and Nakagami-m, lack fitting accuracy, whereas, the more general, yet tractable, $$\alpha $$ α – $$\mu $$ μ distribution has an almost-excellent fit. In order to quantify their fitting efficiency, we used two well-defined and widely-accepted tests, namely the Kolmogorov–Smirnov and the Kullback–Leibler tests. By accurately modeling the THz wireless channel, this work creates the fundamental tools of developing the theoretical and optimization frameworks for such systems and networks.Evangelos N. PapasotiriouAlexandros-Apostolos A. BoulogeorgosKatsuyuki HanedaMar Francis de GuzmanAngeliki AlexiouNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Evangelos N. Papasotiriou Alexandros-Apostolos A. Boulogeorgos Katsuyuki Haneda Mar Francis de Guzman Angeliki Alexiou An experimentally validated fading model for THz wireless systems |
description |
Abstract As the wireless world moves towards the sixth generation (6G) era, the demand of supporting bandwidth-hungry applications in ultra-dense deployments becomes more and more imperative. Driven by this requirement, both the research and development communities have turned their attention into the terahertz (THz) band, where more than $$20\,{\text {GHz}}$$ 20 GHz of contiguous bandwidth can be exploited. As a result, novel wireless system and network architectures have been reported promising excellence in terms of reliability, massive connectivity, and data-rates. To assess their feasibility and efficiency, it is necessary to develop stochastic channel models that account for the small-scale fading. However, to the best of our knowledge, only initial steps have been so far performed. Motivated by this, this contribution is devoted to take a new look to fading in THz wireless systems, based on three sets of experimental measurements. In more detail, measurements, which have been conducted in a shopping mall, an airport check-in area, and an entrance hall of a university towards different time periods, are used to accurately model the fading distribution. Interestingly, our analysis shows that conventional distributions, such as Rayleigh, Rice, and Nakagami-m, lack fitting accuracy, whereas, the more general, yet tractable, $$\alpha $$ α – $$\mu $$ μ distribution has an almost-excellent fit. In order to quantify their fitting efficiency, we used two well-defined and widely-accepted tests, namely the Kolmogorov–Smirnov and the Kullback–Leibler tests. By accurately modeling the THz wireless channel, this work creates the fundamental tools of developing the theoretical and optimization frameworks for such systems and networks. |
format |
article |
author |
Evangelos N. Papasotiriou Alexandros-Apostolos A. Boulogeorgos Katsuyuki Haneda Mar Francis de Guzman Angeliki Alexiou |
author_facet |
Evangelos N. Papasotiriou Alexandros-Apostolos A. Boulogeorgos Katsuyuki Haneda Mar Francis de Guzman Angeliki Alexiou |
author_sort |
Evangelos N. Papasotiriou |
title |
An experimentally validated fading model for THz wireless systems |
title_short |
An experimentally validated fading model for THz wireless systems |
title_full |
An experimentally validated fading model for THz wireless systems |
title_fullStr |
An experimentally validated fading model for THz wireless systems |
title_full_unstemmed |
An experimentally validated fading model for THz wireless systems |
title_sort |
experimentally validated fading model for thz wireless systems |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/80b1381657e143f6a0814dcacc29d83e |
work_keys_str_mv |
AT evangelosnpapasotiriou anexperimentallyvalidatedfadingmodelforthzwirelesssystems AT alexandrosapostolosaboulogeorgos anexperimentallyvalidatedfadingmodelforthzwirelesssystems AT katsuyukihaneda anexperimentallyvalidatedfadingmodelforthzwirelesssystems AT marfrancisdeguzman anexperimentallyvalidatedfadingmodelforthzwirelesssystems AT angelikialexiou anexperimentallyvalidatedfadingmodelforthzwirelesssystems AT evangelosnpapasotiriou experimentallyvalidatedfadingmodelforthzwirelesssystems AT alexandrosapostolosaboulogeorgos experimentallyvalidatedfadingmodelforthzwirelesssystems AT katsuyukihaneda experimentallyvalidatedfadingmodelforthzwirelesssystems AT marfrancisdeguzman experimentallyvalidatedfadingmodelforthzwirelesssystems AT angelikialexiou experimentallyvalidatedfadingmodelforthzwirelesssystems |
_version_ |
1718387578835566592 |