Generalized Bernoulli process with long-range dependence and fractional binomial distribution
Bernoulli process is a finite or infinite sequence of independent binary variables, Xi, i = 1, 2, · · ·, whose outcome is either 1 or 0 with probability P(Xi = 1) = p, P(Xi = 0) = 1 – p, for a fixed constant p ∈ (0, 1). We will relax the independence condition of Bernoulli variables, and develop a g...
Guardado en:
Autor principal: | Lee Jeonghwa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80bcbe01796e43418a2f60b347a0c3ed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized Bernoulli process: simulation, estimation, and application
por: Lee Jeonghwa
Publicado: (2021) -
A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent
por: Francisco Gerardo Benavides-Bravo, et al.
Publicado: (2021) -
Small-Angle Scattering from Fractional Brownian Surfaces
por: Eugen Mircea Anitas
Publicado: (2021) -
On copulas of self-similar Ito processes
por: Jaworski Piotr, et al.
Publicado: (2021) -
Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
por: Necdet Batir, et al.
Publicado: (2021)